• Title/Summary/Keyword: Matlab/Simulink Dynamic Model

Search Result 135, Processing Time 0.02 seconds

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.

A Study on Simulation of Dynamic Characteristics in Prototype Microgrid (Prototype Microgrid의 동특성 모의에 관한 연구)

  • Choi, Eun-Sik;Choi, Heung-Kwan;Jeon, Jin-Hong;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2157-2164
    • /
    • 2010
  • Microgrid is generally defined as cluster of small distributed generators, energy storages and loads. Through monitoring and coordinated control, microgrid can provide various benefits such as reduction of energy cost, peak shaving and power quality improvement. In design stage of microgrid, system dynamic simulation is necessary for optimizing of sizing and siting of DER(distributed energy resources). As number of the system components increases, simulation time will be longer. This problem can restrict optimal design. So we used simplified modeling on energy sources and average switching model on power converters to reduce simulation time. The effectiveness of this method is verified by applying to prototype microgrid system, which is consist of photovoltaic, wind power, diesel engine generators, battery energy storage system and loads installed in laboratory. Simulation by Matlab/Simulink and measurements on prototype microgrid show that the proposed method can reduce simulation time not sacrificing dynamic characteristics.

Evaluation of Thrust Dynamic Load under Tower Shadow in Wind Turbine below the Rated Wind Speed (정격풍속 이하에서 풍력터빈의 타워 섀도 추력 동하중 개발)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.993-1002
    • /
    • 2022
  • This paper relates to a method of modeling the thrust dynamic load caused by the thrust variation occurring on the blade due to the tower shadow below the rated wind speed. A method that uses thrust coefficient is presented by introducing "tower shadow coefficient of thrust variation". For a 2MW wind turbine, the values of "tower shadow coefficient of thrust variation" are calculated and analyzed at wind speeds below the rated. The dynamic load model of thrust under tower shadow is evaluated in Matlab/Simulink using the obtained "tower shadow coefficient of thrust variation" and thrust coefficient. It shows that the thrust variations acting on the three blades by the tower shadow can be expressed using both the thrust coefficient and the introduced "tower shadow coefficient of thrust variation".

A study on the Modeling for Rotors Control with Dynamics Analysis S/W (동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구)

  • Lee W.C.;Kim S.W.;Kim J.S.;Park H.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

Modeling of Lithium Battery Cells for Plug-In Hybrid Vehicles

  • Shin, Dong-Hyun;Jeong, Jin-Beom;Kim, Tae-Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • Online simulations are utilized to reduce time and cost in the development and performance optimization of plug-in hybrid electric vehicle (PHEV) and electric vehicles (EV) systems. One of the most important factors in an online simulation is the accuracy of the model. In particular, a model of a battery should accurately reflect the properties of an actual battery. However, precise dynamic modeling of high-capacity battery systems, which significantly affects the performance of a PHEV, is difficult because of its nonlinear electrochemical characteristics. In this study, a dynamic model of a high-capacity battery cell for a PHEV is developed through the extraction of the equivalent impedance parameters using electrochemical impedance spectroscopy (EIS). Based on the extracted parameters, a battery cell model is implemented using MATLAB/Simulink, and charging/discharging profiles are executed for comparative verification. Based on the obtained results, the model is optimized for a high-capacity battery cell for a PHEV. The simulation results show good agreement with the experimental results, thereby validating the developed model and verifying its accuracy.

A Simulator for a Performance Test of HEVs (하이브리드 자동차 성능 시뮬레이터)

  • Zheng, Chun-Hua;Kim, Nam-Wook;Lee, Dae-Heung;Lim, Won-Sik;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.353-356
    • /
    • 2008
  • HEV(Hybrid Electrical Vehicle) is considered as one of the next generation vehicles. To develop the HEV, there must be a reliable simulator, by which the capacities of the power resources are tested, and the parameters of the HEV are optimized before developing the real model of the HEVs. This process can save the money for designing the HEV system and improve the system without experiments. Matlab Simulink is familiar to mechanical engineers and the program can simultaneously provide a system model and a controller in one program. Nowadays, the Simdriveline toolbox which is used for analysis a power-train system is applied to build a dynamic model for a HEV system. In this study, we make a HEV simulator with the Simdriveline toolbox and develop a controller. There are two simple strategies, applied to the controller. One strategy includes a power split ratio and a shift map which are created by user. Other strategy calculated an appropriate amount of resource's torque along specific results, and this is useful when users can't develop a fitting controller. The methodologies for configuring the simulator and its control system are presented in this paper.

  • PDF

A Study on the Modeling of Transient Response in Automated Manual Transmission for Hybrid Trucks

  • Park, Kyung-Min;Ko, Young-Jin
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.128-137
    • /
    • 2013
  • Modern transmission technologies such as automated manual transmission(AMT) and dual clutch transmission(DCT) are interested to all manufactures due to their fuel efficiency and driver's convenience, especially in a hybrid system. AMT has advantages in that they have a high efficiency of manual transmissions(MT) and offer operation convenience similar to automatic transmissions(AT), but it has some disadvantages in that they have torque gap during gear shift and shift time. To reduce disadvantages, it is necessary to evaluate errors and characteristics as a developing simulation model before experimental verification. The purpose of this study is to develop virtual components and simulate the transient response of AMT. A dynamic AMT model and a control logic for an integrated vehicle model have been developed using Matlab/Simulink as a simulation platform. In this paper, the clutch model to describe the stick-slip transition mode and the transmission model to describe the neutral gear shifting is introduced and compared with each other.

Collision Avoidance using Model Predictive Control (모델 예측 제어를 활용한 충돌 회피)

  • Choi, Jaewoong;Seo, Jongsang;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.

Dynamic Behavior Analysis of Tiny Robot

  • Wang, Zhao;Lim, Eng Gee
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 2014
  • The wireless capsule endoscopy played an important role as the evolutionary medical device to solving the difficulties such as diagnosing the intestine diseases. Due to the limited size and functions, it has some drawbacks. The most obstacle thing is the disability of self-motion, it means that it cannot provide the speed problem. Hence, the characteristics of human digestion system is briefly introduced, especially the intestine, to get the information of endoscopy dynamics. Next, in order to make an abstraction of the condition, a new dynamic friction model called LuGre model is introduced and clearly analysed to get the characteristics and the usage of the model. By the consideration of parameters that are tightly related with the real situation of the capsule endoscopy. The Matlab Simulink was applied to build the model and verified by the simulation to discover the features.

  • PDF