• 제목/요약/키워드: Mathematically-gifted students

검색결과 184건 처리시간 0.021초

유추에 의한 문제제기 활동을 통해 본 통계적 개념 이해 (Understanding of Statistical concepts Examined through Problem Posing by Analogy)

  • 박미미;이동환;이경화;고은성
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제22권1호
    • /
    • pp.101-115
    • /
    • 2012
  • 유사성을 근거로 하는 개연적 추론인 유추는 수학뿐만 아니라 물리 등의 여러 분야에서 개념 형성, 문제해결, 새로운 발견 등을 위해 사용되는 하나의 사고전략이다. 통계교육자들은 통계에서도 역시 유추가 유용한 사고전략으로 사용될 수 있다고 언급한다. 본 연구에서는 수학과는 다른 특성을 지닌 통계에서 학생들의 유추적 사고의 특징을 살펴본다. 이를 위해 수학영재학급 학생들을 대상으로 실생활 맥락이 담긴 통계문제를 기저문제로 제시하고 이와 유사한 문제를 만들도록 하였다. 학생들이 만든 문제는 기저문제의 통계적 맥락의 보존 여부 및 기저문제의 기본구조 유지 여부에 따라 다섯 가지 유형으로 분류되었다. 각 유형의 특징을 분석한 결과 다음과 같은 시사점을 얻을 수 있었다. 통계에서는 기본구조가 유지되어도 통계적 맥락이 훼손되는 경우 그 문제의 의미를 찾을 수 없으나, 기본구조가 변형되었다 하더라도 통계적 맥락이 보존되는 경우 통계적 개념에 대한 재개념화에 기여할 수 있다는 가능성을 확인하였다.

  • PDF

수학 정보과학 융합을 위한 창의적 문제해결 활동 개발: 영재 학생을 대상으로 한 모자 게임을 중심으로 (Development of Creative Problem-Solving Activities for Integrating Mathematics and Information Science: Focusing on the Hat Game for Mathematically Gifted Students)

  • 서지영;윤상균
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제36권3호
    • /
    • pp.439-467
    • /
    • 2022
  • 미래 사회에는 지식뿐만 아니라 창의성과 협동심, 융합적 사고 등을 포함하는 다양한 역량이 필요하다. 본 연구는 중요한 수학 교과 역량인 수학 문제해결력, 의사소통 능력 등의 함양을 기대하며 수학 정보과학 융합을 위한 프로그램을 개발하였다. 선행지식이 크게 요구되지 않고, 일상언어와 쉽게 접할 수 있는 도구만으로 동기유발이 가능하며 다자간 협력이 필수적인 창의적 문제해결 활동 기반 프로그램이다. 활동의 참가자 수가 증가함에 따라 수학의 유용성과 엄밀성을 경험할 수 있으며, 이론적 원리는 유한체 위에서의 행렬 이론을 바탕으로 한다. 또한 정보과학에서 주요 주제 중 하나인 오류정정코드와의 관련성을 강조할 수 있도록 구성하였다. 본 프로그램의 실세계 맥락이 수학적 의사소통 능력의 함양과 수학의 가치 경험 기회 제공에 도움이 되기를 바라고, 코딩을 수반하지 않는다는 점에서 교사들의 접근성이 높기를 기대한다.

수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로- (A study on the improvement of ability of a creative solving mathematical problem)

  • 박형빈;서경식
    • 한국학교수학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-17
    • /
    • 2003
  • 이 논문은 수학적인 재능을 가진 농어촌 수학영재지도를 위하여 농어촌 지역에 위치한 과학영재교육원(지역교육청 주관)에서 수학하는 중학교 2학년 학생을 대상으로 창조적인 수학문제 해결력을 증진시키는 방법을 연구한다. 특히 수학영재교육에서 수학 창의적 문제해결력을 증진시키기 위한 탐색방안을 연구하여 탐구학습에 적용하는 수업모형과 학습지도안을 개발하고 개발된 탐구학습지도안을 탐구학습모형에 적용하여 지적능력(IQ)에 따른 수업 형태의 선호도 반응, 지적능력과 수학창의력 능력과의 관계, 탐구학습과 수학 창의적 문제해결 능력과의 관계를 비교분석하여 수학영재교육에 있어서 수학 창의적 문제해결에 알맞는 교수·학습 모형과 학습내용을 탐색하여 보편화된 교재이외의 다양한 수학학습탐구주제를 가지고 학생들의 참여를 이끌어 내어 토론식 수업을 전개하는 것이 바람직한 수업모델이 될 수 있을 것이라는 결론을 얻었다.

  • PDF

수학적 사고력에 관한 인지신경학적 연구 개관 (A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability)

  • 김연미
    • 인지과학
    • /
    • 제27권2호
    • /
    • pp.159-219
    • /
    • 2016
  • 수학적 사고력은 STEM(science, technology, engineering, mathematics) 분야에서의 학업적인 성취와 과학기술의 혁신에서 중요한 역할을 하고 있다. 본 연구에서는 학제 간 연구 분야인 수 인지(numerical cognition) 및 수학적 인지와 관련된 최근의 인지신경학적 연구 결과들을 종합하여 개관하였다. 첫째로 수학적 사고의 기초가 되는 뇌 기제의 위치와 정보처리 메커니즘을 확인하였다. 수학적 사고는 영역 특정적(domain specific)인 기능인 수 감각과 시공간적 능력뿐만 아니라 영역 일반적(domain general)인 기능인 언어, 장기기억, 작업 기억(working memory) 등을 기초로 하며 이를 토대로 추상화, 추론 등의 고차원적인 사고를 한다. 이 중에서 수 감각과 시공간적 능력은 두정엽(parietal lobe)을 기반으로 한다. 두 번째로는 수학적 사고 능력에서 관찰되는 개인 차이에 대하여 고찰하였다. 특히 수학 영재들의 신경학적인 특성을 신경망 효율성(neural efficiency)의 관점에서 고찰해 보았다. 그 결과 높은 지능이란 두뇌가 얼마나 많이 일하느냐가 아니라 얼마나 효율적으로 일하는가에 달렸다는 사실을 확인하였다. 수학 영재들의 또 다른 특성은 좌반구와 우반구 간의 연결과 반구 내에서 전두엽과 두정엽의 연결이 뛰어나다는 사실이다. 세 번째로는 학습과 훈련, 그리고 성장에 따른 변화 및 발전에 대한 분석이다. 개인이 성장하며, 수학 학습과 훈련을 하게 될 때 이에 따라 두뇌 피질에서도 변화가 반영되어 나타난다. 그 변화를 피질에서의 활성화 수준의 변화, 재분배, 구조적 변화라는 관점에서 해석하였다. 이 중에서 구조적 변화는 결국 신경 가소성(neural plasticity)을 의미한다. 마지막으로 수학적 창의성은 수학적 지식(개념)을 기초로 하여 수학적 개념들을 결합하는 단계가 요구되며, 그 후 결합된 개념들 중에서 심미적인 선택을 통해 수학적 발명(발견)으로 연결된다. 전문성이 높아질수록 결합과 선택이라는 두 단계가 더욱 중요해진다.