• Title/Summary/Keyword: Mathematical problem

Search Result 3,803, Processing Time 0.034 seconds

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • Present article deals with the static stability analysis of compositionally graded nanocomposite beams reinforced with graphene oxide powder (GOP) is undertaken once the beam is subjected to an induced force caused by nonuniform magnetic field. The homogenized material properties of the constituent material are approximated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a higher-order refined beam model is incorporated with the dynamic form of the virtual work's principle to derive the partial differential motion equations of the problem. The governing equations are solved via Galerkin's method. The introduced mathematical model is numerically validated presenting a comparison between the results of present work with responses obtained from previous articles. New results for the buckling load of GOP reinforced nanocomposites are presented regarding for different values of magnetic field intensity. Besides, other investigations are performed to show the impacts of other variants, such as slenderness ratio, boundary condition, distribution type and so on, on the critical stability limit of beams made from nanocomposites.

Quantum Key Distribution System integrated with IPSec (양자키분배와 IPSec을 결합한 네트워크 보안 장치 연구)

  • Lee, Eunjoo;Sohn, Ilkwon;Shim, Kyuseok;Lee, Wonhyuk
    • Convergence Security Journal
    • /
    • v.21 no.3
    • /
    • pp.3-11
    • /
    • 2021
  • Most of the internet security protocols rely on classical algorithms based on the mathematical complexity of the integer factorization problem, which becomes vulnerable to a quantum computer. Recent progresses of quantum computing technologies have highlighted the need for applying quantum key distribution (QKD) on existing network protocols. We report the development and integration of a plug & play QKD device with a commercial IPSec device by replacing the session keys used in IPSec protocol with the quantum ones. We expect that this work paves the way for enhancing security of the star-type networks by implementing QKD with the end-to-end IP communication.

Are Precious Metals Hedge Against Financial and Economic Variables?: Evidence from Cointegration Tests

  • YAQOOB, Tanzeela;IQBAL, Javed
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.81-91
    • /
    • 2021
  • This paper investigates the long run hedging ability of precious metals against the risks associated with adverse conditions of economic and financial variables for Pakistan, the USA, China, and India. Monthly data of gold, silver, platinum, stock returns, exchange rate, industrial production, and inflation was collected for the selected economies. Saikkonen and Lutkepohl (2002) unit root test was employed to access the unit root properties of the data series and identify the break dates. Furthermore, this study used the Johansen cointegration test with and without structural breaks to identify the long-run relationship between metals prices and different financial and economic variables. The findings suggest that the time series under study have unit root problem at level with and without structural breaks. Without considering structural breaks, the Johansen trace test indicates that in Pakistan and China, gold, silver, and platinum hold a cointegrating relationship with macroeconomic and financial variables. For the US, gold indicates cointegration which supports the hedging ability of gold against inflation, stock, and industrial production in the long run. The results of the cointegration test after incorporating the structural breaks provide even stronger evidence of the long-run relationship of precious metals and consumer prices, exchange rate, and stock prices.

Control system design for vessel towing system by activating rudders of the towed vessel

  • Lee, Dong-Hun;Chakir, Soumayya;Kim, Young-Bok;Tran, Duc-Quan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.943-956
    • /
    • 2020
  • In this study, the motion control problem of the vessel towed by a towing ship (tugboat) is considered. The non-powered towed ship is dragged by the towing ship. Even though the towed ship is equipped with propulsion systems, they cannot be used at low or constant speeds due to safety issues. In narrow canals, rivers, and busy harbor areas especially, where extreme tension is required during towing operation, the course stability of the towed vessel depends on the towing ship. Therefore, the authors propose a new control strategy in which the rudder system of the towed vessel is activated to provide its maneuverability. Based on the leader-follower system configuration, a nonlinear mathematical model is derived and a back-stepping control is designed. By simulation and experiment results with a comparison study, the usefulness and effectiveness of the proposed strategy are validated.

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

Security Analysis of Two Certificateless Signature Schemes (두 인증서 없는 서명 기법들에 관한 안전성 분석)

  • Lee, Ju-Hee;Shim, Kyung-Ah;Lee, Hyang-Sook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2009
  • Certificateless cryptography eliminates the need of certificacates in the public key crytosystems and solves the inherent key escrow problem in identity-based cryptosystems. This paper demonstrates that two certificateless signature schemes proposed by Guo et al. and Wang et al. respectively are insecure against key replacement attacks by a type I adversary. We show that the adversary who can replace a signer's public key can forge signatures under the replaced public key. We then make a suggestion to prevent the attacks.

Study of Integrated Production-Distribution Planning Using Simulation and Genetic Algorithm in Supply Chain Network (공급사슬네트워크에서 시뮬레이션과 유전알고리즘을 이용한 통합생산분배계획에 대한 연구)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.

Development of CTP Selection Methodology of Semiconductor Equipment Line Using AHP and Fuzzy Decision Model (AHP 및 Fuzzy 의사결정 모형을 활용한 반도체 장치라인의 CTP 선정 방법론 개발)

  • Jeong, Jaehwan;Kim, Jungseop;Kim, Yeojin;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.6-13
    • /
    • 2021
  • Cases and studies on the selection method of CTQ are relatively active, but there are few cases or studies on the selection method of CTP which is important in the device industry. In fact, many companies simply select and manage CTP from the point of contact based on their experience and intuition. The purpose of this study is to present an evaluation model and a mathematical decision model for rational and systematic CTP selection to improve the process quality of semiconductor equipment lines. In the evaluation model, AHP (Analytic Hierarchy Process) analysis technique was applied to show objective and quantitative figures, and Fuzzy decision-making model was used to solve the ambiguity and uncertainty in the decision-making process. Decision Value (DV) was presented. The subjects were 22 process factors managed in the Plating Process that the representative equipment line can do. As a result, the evaluation model proposed in this study can support more efficient and effective decision-making for process quality improvement by more objectively measuring the problem of subjective CTP selection in manufacturing sites.

Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer

  • Laib, Salaheddine;Meftah, Sid Ahmed;Youzera, Hadj;Ziane, Noureddine;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.253-268
    • /
    • 2021
  • The present paper treats the free vibration problem of the masonry wall strengthened with thin composite plate by viscoelastic adhesive layer. For this goal two steps are considered in the analytical solution. In the first one, an efficient homogenisation procedure is given to provide the anisotropic properties of the masonry wall. The second one is dedicated to purpose simplified mathematical models related to both in-plane and out-of-plane vibration problems. In these models, the higher order shear theories (HSDT's) are employed for a more rigours description of the shear deformation trough the masonry wall and the composite sheet. Ritz's method is deployed as solution strategy in order to get the natural frequencies and their corresponding loss factors. The obtained results are validated with the finite element method (FEM) and then, a parametric study is undertaken for different kinds of masonry walls strengthened with composite sheets.