• Title/Summary/Keyword: Mathematical model fitting

Search Result 65, Processing Time 0.03 seconds

Color Segmentation robust to Illumination Variations based on Statistical Methods of Hue and Saturation including Brightness (밝기 변화를 고려한 색상과 채도의 확률 모델에 기반한 조명변화에 간인한 컬러분할)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hagbae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.604-614
    • /
    • 2005
  • Color segmentation takes great attentions since a color is an effective and robust visual cue for characterizing one object from other objects. Color segmentation is, however, suffered from color variation induced from irregular illumination changes. This paper proposes a reliable color modeling approach in HSI (Hue-Saturation-Intensity) rotor space considering intensity information by adopting B-spline curve fitting to make a mathematical model for statistical characteristics of a color with respect to brightness. It is based on the fact that color distribution of a single-colored object is not invariant with respect to brightness variations even in HS (Hue-Saturation) plane. The proposed approach is applied for the segmentation of human skin areas successfully under various illumination conditions.

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

Modeling of Piano Sound Using Method of Line-Segment Approximation and Curve Fitting (선분 근사법과 곡선의 적합성을 이용한 피아노 음의 모델링)

  • Lim, Hun;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.86-91
    • /
    • 2000
  • In this paper, we will discuss the characteristics of the magnitude and the phase of the piano sound in frequency domain by using the FFT(Fast Fourier Transform). The method deciding the parameters representing those sounds through the mathematical model is described. We used the curve fitting method for the modeling of the harmonic part of the sound including the fundamental frequency in order to minimize the errors between original sounds and modeled sounds. furthermore, we used the line segment approximation method for the modeling of the noise part around fundamental frequency. We also applied the same method for the phase model and could get the modeled sound to be similar to the original sound using the parameters. Therefore the high compression ratio comparing the modeled sound to the original sound is achieved.

  • PDF

Mathematical Model for the Hydrodynamic Forces in Forward or Backward Low Speed Maneuvering (저속(低速) 전.후진(前.後進) 조종(操縱)에 의한 동유체력(動流體力)의 수학(數學)모델)

  • Jin-Ahn Kim;Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.45-52
    • /
    • 1992
  • The Mathematical Model, which can describe the maneuvering motion of a ship in low speed, is highly required these days because it is directly related to the safety of ship in confused harbour. Kose has presented a new model for the low speed maneuvering motion, but the usefulness of it is not confirmed widely. Lets of difficulties are revealed in the case of low speed maneuver, The first is the fact that a ship moves the stirred water region for the longer time than in the case of high speed. So, the hydrodynamic forces, exerted on the hull need to be treated strictly, not by the ordinary differential equation with constant coefficients. Another difficulty is arised from the fact the lateral motion is relatively large comparing to the longitudinal motion in low speed. And, by the result the effect of cross-flow drag or vortex sheding effects are dominant. Besides, the captive model tests of low speed motion has lots of problems. For example, the hydrodynamic forces do not converge to a certain values for the long time. And the absolute values of measured forces are very small, so we must expend lots of efforts to raise up the S/N ratio of the experiments. In this paper, a new mathematical model for the maneuvering motion in low speed, is built up, and the usefulness is discussed, comparing with other models, for example, Kose's model or M.M.G. model or Cross-Flow model, The CMT data for a PCC model of 3.00 M length, released from the RR-742 of Japan, are used for the validation of each models.

  • PDF

Model of Organic Light Emitting Device Emission Characteristics with Alternating Current Driving Method (교류 구동 방법에 의한 유기전계발광소자 발광 특성의 모델)

  • Seo, Jung Hyun;Ju, Sung Hoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.586-591
    • /
    • 2021
  • This paper proposes a mathematical model that can calculate the luminescence characteristics driven by alternating current (AC) power using the current-voltage-luminance (I-V-L) properties of organic light emitting devices (OLED) driven by direct current power. Fluorescent OLEDs are manufactured to verify the model, and I-V-L characteristics driven by DC and AC are measured. The current efficiency of DC driven OLED can be divided into three sections. Region 1 is a section where the recombination efficiency increases as the carrier reaches the emission layer in proportion to the increase of the DC voltage. Region 2 is a section in which the maximum luminous efficiency is stably maintained. Region 3 is a section where the luminous efficiency decreases due to excess carriers. Therefore, the fitting equation is derived by dividing the current density and luminance of the DC driven OLED into three regions, and the current density and luminance of the AC driven OLED are calculated from the fitting equation. As a result, the measured and calculated values of the AC driving I-V-L characteristics show deviations of 4.7% for current density, 2.9 % for luminance, and 1.9 % for luminous efficiency.

A Graphical Method for Evaluating the Effect of Blocking in Response surface Designs Using Cuboidal Regions

  • Sang-Hyun Park;Dae-Heung Jang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.607-621
    • /
    • 1998
  • When fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance even if the experimental runs are the same. Therefore, care should be exercised in the selection of blocks. In this paper, we prognose a graphical method for evaluating the effect of blocking in a response surface designs using cuboidal regions in the presence of a fixed block effect. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout the entire experimental region of interest when this region is cuboidal, and compare the block effect in the cases of the orthogonal and non-orthogonalblockdesigns, resfectively.

  • PDF

DEFECT INSPECTION IN SEMICONDUCTOR IMAGES USING HISTOGRAM FITTING AND NEURAL NETWORKS

  • JINKYU, YU;SONGHEE, HAN;CHANG-OCK, LEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.263-279
    • /
    • 2022
  • This paper presents an automatic inspection of defects in semiconductor images. We devise a statistical method to find defects on homogeneous background from the observation that it has a log-normal distribution. If computer aided design (CAD) data is available, we use it to construct a signed distance function (SDF) and change the pixel values so that the average of pixel values along the level curve of the SDF is zero, so that the image has a homogeneous background. In the absence of CAD data, we devise a hybrid method consisting of a model-based algorithm and two neural networks. The model-based algorithm uses the first right singular vector to determine whether the image has a linear or complex structure. For an image with a linear structure, we remove the structure using the rank 1 approximation so that it has a homogeneous background. An image with a complex structure is inspected by two neural networks. We provide results of numerical experiments for the proposed methods.

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

A Study on the Development of Arc Sensor for Flux Cored Arc Welding Process and its Application for Seam Tracking (Flux Cored Arc용접용 아크센서의 개발 및 이를 이용한 용접선 추적에 관한 연구)

  • 김수영;이승영;나석주
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.190-198
    • /
    • 1992
  • Among the variety of welding processes available, the flux cored arc welding is one of the most frequently used process, because of its wide range of application and high productivity. The weld joint tracking is indispensable to improve the flexibility of the arc welding robot application for the flux cored arc welding (FCAW) process. In this study, an arc sensor which utilizes the electrical signal obtained from the welding arc itself was developed for weld joint tracking in FCAW. Because a model of the welding arc in flux cored arc welding was required to develop the arc sensor, a mathematical model was proposed by analysing the welding arc behaviour, and also an experimental model by using the factorial experiment and least square method. For overcoming the fluctuation in the welding current signal during tracking the weld joint, it was fitted to a curve which is inversely proportional to a trace of tip-to-workpiece distance by using the quadratic curve-fitting method.

  • PDF

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.