• Title/Summary/Keyword: Mathematical Processes

Search Result 726, Processing Time 0.033 seconds

A Model Management Framework for Supporting Departmental Collaborative Work (부서간 협동적 작업을 지원하는 모형관리 체계의 개발)

  • Huh, Soon-Young;Kim, Hyung-Min
    • Asia pacific journal of information systems
    • /
    • v.10 no.2
    • /
    • pp.51-69
    • /
    • 2000
  • Recently, as business problems become more complicated and require more precise quantitative results, large-scale model management systems are increasingly in demand for supporting the decision-making activities. In addition, as distributed computing over networks gains popularity, departmental computing systems are gradually adopted in an organization to facilitate collaboration of geographically dispersed multiple departments. In departmental collaborative model management systems, multiple departments share common models but approach them with different user-views depending on their departmental needs. Moreover, the shared models become evolved as their structures and the corresponding data sets change due to the dynamic nature of the operating environment and the inherent uncertainty associated with the problems. In such capacity, providing the multiple departmental users with synchronized and consistent views of the models is important to improve the overall productivity. In this paper, we propose a collaborative model management framework for coordinating model change and automatic user-view update in a departmental computing environment. To do so, we describes changes in the model and their effects occurred in departmental model management environments and identifies the constructs and processes for maintaining the consistency between a shared model and its departmental user-views. Especially, in this framework, generic model concept was adopted for accommodating diverse mathematical models in a uniform way in a modelbase and object-oriented database management systems(ODBMS) for combining the model management constructs and automatic user-view update mechanisms in a single formalism. A prototype object-oriented modeling environment was developed using an ODBMS called ObjectStore and $C^{++}$ programming language on Windows NT.

  • PDF

Improvement on the Laminated Busbar of NPC Three-Level Inverters based on a Supersymmetric Mirror Circulation 3D Cubical Thermal Model

  • He, Feng-You;Xu, Shi-Zhou;Geng, Cheng-Fei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2085-2098
    • /
    • 2016
  • Laminated busbars with a low stray inductance are widely used in NPC three-level inverters, even though some of them have poor performances in heat equilibrium and overvoltage suppression. Therefore, a theoretical method is in need to establish an accurate mathematical model of laminated busbars and to calculate the impedance and stray inductance of each commutation loop to improve the heat equilibrium and overvoltage suppression performance. Firstly, an equivalent circuit of a NPC three-level inverter laminated busbar was built with an analysis of the commutation processes. Secondly, on the basis of a 3D (three dimensional) cubical thermal model and mirror circulation theory, a supersymmetric mirror circulation 3D cubical thermal model was built. Based on this, the laminated busbar was decomposed in 3D space to calculate the equivalent resistance and stray inductance in each commutation loop. Finally, the model and analysis results were put into a busbar design, simulation and experiments, whose results demonstrate the accuracy and feasibility of the proposed method.

A Study of Optimization Approach for GPS Anti-Jamming System's Integration on Military Aircraft Based on the Requirement of Capability (요구성능 기반의 군용 항공기 항재밍 GPS 체계 구축 최적화 방안 연구)

  • Lee, Moongul;Shin, Kisu;Choi, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.66-83
    • /
    • 2015
  • Global Positioning System(hereafter; GPS) is recently an essential element in the various navigation and weapon delivery systems of military aircraft. However, GPS is vulnerable to the jamming threats since its signal power is very weak. Therefore, ROK defense has been concerning how to resolve this issue and how to integrate these systems needed, and is trying to acquire the proper anti-jamming GPS system. This study is to provide several schemes against the jamming threats effectively. We propose the several processes to analyze the required capability and demonstrate the result's of modeling and simulations(hereafter; M&S) for this integration of military aircraft, and the mathematical programming model for system optimization of military aircraft anti-jamming GPS system on the basis analysis of M&S results which could be considered available budget and the project characteristic. These schemes will be helpful on proper acquisition of these systems and. We are looking forward to contributing to the integration of anti-jamming GPS system of ROK military aircraft.

A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System (초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계)

  • O, Tae-Gyu;Jeong, Hyeong-Hwan;Heo, Dong-Yeol;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

Drilling Characteristics and Modeling of Diamond Core Drilling Processes (다이아몬드 코어드릴 공정의 구멍가공 특성과 모델링)

  • Yoon, Kwan-Woo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2008
  • Diamond core drills are applied to drill difficult-to-cut materials. This paper proposes basic understanding of ceramic drilling mechanics and characteristics of main factors affecting tool life, tool wear, cutting force, and chipping thickness. In contrast to conventional drilling, the core drilling process make deep grooves on the workpiece. One difficulty of it is the evacuation of chips from the drilled groove. As the drilling depth increases, an increased amount of chips tend to cluster together and clog the groove. Eventually severe wear develops and diamond grits are separated from the drill body. To relieve the clogging problem and to evacuate chips from the groove easily, the helical drilling process is applied for the core drilling process. To analyze drilling characteristics and derive optimal drilling conditions, tool life, tool wear, cutting force, and chipping thickness are quantified through the monitoring system and the Taguchi method. Mathematical models for the tool life and chipping thickness are derived from the response surface method. Optimal drilling database has been constructed through the experimental models.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

Removal of organic acid salts from 1,3-propanediol fermentation broth by electrodialysis

  • Wang, Xiao-Lin;Gong, Yan;Yu, Li-Xin;Tang, Yu;Liu, De-Hua
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.19-24
    • /
    • 2004
  • ED method is employed to effectively remove the organic acid salts in actual PDO fermentation broth. The lower electrical potential is selected to avoid the serious membrane fouling so as to ensure a stable and durative desalination process. Under the selected operation conditions, about 90% of organic acids salts are removed from PDO fermentation broth successfully by ED process. To reduce the loss of PDO product due to the diffusion, the operation time should be considered carefully. And based on mass balance equation and irreversible thermodynamics approach, a mathematical model is developed to describe the desalination process of an aqueous solution containing neutral solute by ED method. While the influence of concentration polarization is reflected by decreasing the conductivity of membrane, the model is verified well to describe the ED processes under varied operation conditions. Through the model, ED process of actual PDO fermentation broth is simulated to get a suitable scope of initial concentration in concentrated compartment.

  • PDF

A Genetic Algorithm for Scheduling of Trucks with Inbound and Outbound Process in Multi-Door Cross Docking Terminals (다수의 도어를 갖는 크로스도킹 터미널에서 입고와 출고를 병행하는 트럭일정계획을 위한 유전알고리즘)

  • Joo, Cheol-Min;Kim, Byung-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • Cross docking is a logistics management concept in which items delivered to a terminal by inbound trucks are immediately sorted out, routed and loaded into outbound trucks for delivery to customers. Two main advantages by introducing a cross docking terminal are to consolidate multiple smaller shipment into full truck load and remove storage and order picking processes to save up logistics costs related to warehousing and transportation costs. This research considers the scheduling problem of trucks in the cross docking terminals with multi-door in an inbound and outbound dock, respectively. The trucks sequentially deal with the storage process at the one of inbound doors and the shipping process at the one of the outbound doors. A mathematical model for an optimal solution is derived, and genetic algorithms with two different chromosome representations are proposed. To verify performance of the GA algorithms, we compare the solutions of GAs with the optimal solutions and the best solution using randomly generated several examples.

Spatial Scheduling for Mega-block Assembly Yard in Shipbuilding Company (조선소의 메가블록 조립작업장을 위한 공간계획알고리즘 개발)

  • Koh, Shie-Gheun;Jang, Jeong-Hee;Choi, Dae-Won;Woo, Sang-Bok
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.78-86
    • /
    • 2011
  • To mitigate space restriction and to raise productivity, some shipbuilding companies use floating-docks on the sea instead of dry-docks on the land. In that case, a floating-crane that can lift very heavy objects (up to 3,600 tons) is used to handle the blocks which are the basic units in shipbuilding processes, and so, very large blocks (these are called the mega-blocks) can be used to build a ship. But, because these mega-blocks can be made only in the area near the floating-dock and beside the sea, the space is very important resource for the process. Therefore, our problem is to make an efficient spatial schedule for the mega-block assembly yard. First of all, we formulate this situation into a mathematical model and find optimal solution for a small problem using a commercial optimization software. But, the software could not give optimal solutions for practical sized problems in a reasonable time, and so we propose a GA-based heuristic algorithm. Through a numerical experiment, finally, we show that the spatial scheduling algorithm can provide a very good performance.