• Title/Summary/Keyword: Mathematical Optimization

Search Result 898, Processing Time 0.025 seconds

고객지원 센터의 최적 인력 일정계획 수립 모델 개발에 대한 사례연구 (Case Study : Development of Customer Support Center Staffing Model)

  • 유우연;김희동;양재경
    • 산업공학
    • /
    • 제18권3호
    • /
    • pp.317-326
    • /
    • 2005
  • Staff scheduling is an important area, both from an academic and industrial point of view. It has become increasingly important as business becomes more service oriented and cost conscious in a global environment. There has been a lot of study to develop new and efficient staff scheduling models and methods. The purpose of this paper is not to develop new theoretical results but to develop a comprehensive user-friendly staffing model that can be applied to the real-world practice. The developed staffing software, OptStaff, provides the optimal configuration of the customer support center including the selection of customer support center locations, the allocation of staffs to each selected location, and schedules of staffs, so as to minimize the total cost while maximizing the customer satisfaction level. OptStaff also has capability to do scenario analysis by varying the levels of parameters and to create a variety of graphs and reports with user-friendly interfaces.

Application of Consignment to Three Stage Supply Chain

  • Ryu, Chungsuk;Hwang, Gyuyoung
    • 유통과학연구
    • /
    • 제16권7호
    • /
    • pp.35-45
    • /
    • 2018
  • Purpose - The study investigates the impact of consignment on the economic performance in the supply chain with three stages. Through the analysis on distinct forms of consignment application, this study intends to answer to the question of how the consignment should be used in the multi-stage supply chain. Research design, data, and methodology - The proposed mathematical model represents the supply chain system with a manufacturer, a wholesaler, and a retailer. Three different forms of consignment application are considered depending on which stages adapt the consignment, and their system profits are compared with the traditional non-consignment system in numerical examples. Results - The numerical examples show that the serial consignment application performs better than any other forms of consignment as well as the non-consignment system. The additional analysis indicates that the system profit is significantly sensitive to the consignment rate. Conclusions - The outcome of this study implies the potential of consignment to improve the system performance even in the multi-stage supply chain system. Meanwhile, each supply chain member's preference to the specific form of consignment application could be different depending on which stage he has. All the supply chain members should jointly determine the appropriate consignment rates to obtain the best system performance.

병렬형 하이브리드 차량의 동적 구간 제어 (Receding Horizon Control of a Parallel Hybrid Electric Vehicle)

  • 전순일;김기백;조성태;박영일;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.659-664
    • /
    • 2000
  • Fuel-consumption and catalyst-out emissions of a parallel hybrid electric vehicle are affected by operating region of an engine. In many researches, It is generally known that it is profitable in fuel- consumption to operate engine in OOL(Optimal Operating Line). We established the mathematical model of a parallel hybrid electric vehicle, which is linear time-invariant. To operate an engine in OOL, we applied RHC(Receding Horizon Control) to the driving control of a parallel hybrid electric vehicle. And it is known that the RHC has advantages such as good tracking performance under state and control constraints. This RHC is obtained by using linear matrix inequality (LMI) optimization. In this paper, there are three main topics. First, without state and control constraints, the optimal tracking of OOL was simulated. Second, with state and control constraints by engine and motor performances, the optimal tracking of OOL was simulated. In the last, we studied on the optimal gear ratio. That is to say, we combined the RHC and the iterative simulation to extract the optimal gear ratio. In this simulation, the vehicle is commanded to track the reference vehicle trajectory and the engine is operated in the optimal operating region which is made by the state constraints.

  • PDF

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.

전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델 (Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine)

  • 김일수;박창언;정영재;손준식;남기우
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

A fast damage detecting technique for indeterminate trusses

  • Naderi, Arash;Sohrabi, Mohammad Reza;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.585-594
    • /
    • 2020
  • Detecting the damage of indeterminate trusses is of major importance in the literature. This paper proposes a quick approach in this regard, utilizing a precise mathematical approach based on Finite Element Method. Different to a general two-step method defined in the literature essentially based on optimization approach, this method consists of three steps including Damage-Suspected Element Identification step, Imminent Damaged Element Identification step, and finally, Damage Severity Detection step and does not need any optimizing algorithm. The first step focuses on the identification of damage-suspected elements using an index based on modal residual force vector. In the second step, imminent damage elements are identified among the damage-suspected elements detected in the previous step using a specific technique. Ultimately, in the third step, a novel relation is derived to calculate the damage severity of each imminent damaged element. To show the efficiency and quick function of the proposed method, three examples including a 25-bar planar truss, a 31-bar planar truss, and a 52-bar space truss are studied; results of which indicate that the method is innovatively capable of suitably detecting, for indeterminate trusses, not only damaged elements but also their individual damage severity by carrying out solely one analysis.

여산믹스문제를 위한 발견적접근 (A Heuristic Approach to Budget-Mix Problems)

  • 이재관
    • 한국국방경영분석학회지
    • /
    • 제6권1호
    • /
    • pp.93-101
    • /
    • 1980
  • An effectively designed budget system in the poor resources environment necessarily has three design criteria : (i) to be both planning-oriented and control-oriented, (ii) to be both rationalistic and realistic, (iii) to be sensitive to the variations of resources environment. PPB system is an extreme (planning-oriented and rationalistic) and conventional OEB/OUB system is the other extreme (control-oriented and incrementalistic). Generally, the merits of rationalism are limited because of the infeasibility of applications. Hence, mixtures of the two extremes such as MBO, ZBB, and RZBB have been examined and applied during the last decade. The classical mathematical models of capital budgeting are the starting points of the development of the Budget-Mix Model introduced in this paper. They are modified by the followings: (i) technological-resource constraints, (ii) bounded-variable constraint, (iii) the exchange rules. Special emphasis is laid on the above (iii), because we need more efficient interresource exchanges in the budget-mix process. The Budget-Mix Model is not based on optimization, but a heuristic approach which assures a satisficing solution. And the application fields of this model range between the incremental Nonzero-Base Budgeting and the rational Zero-Base Budgeting. In this thesis, the author suggests 'the budget- mix concept' and a budget-mix model. Budget-mix is a decision process of making program-mix and resource-mix together. For keeping this concept in the existing organization realistic, we need the development of quantitative models describing budget-mix situations.

  • PDF

인공위성의 내부 진동 분리를 위한 능동 제어 연구 (Active Control of On-board Jitter Isolation for Spacecraft)

  • 오세붕;방효충;탁민제
    • 한국항공우주학회지
    • /
    • 제32권9호
    • /
    • pp.80-87
    • /
    • 2004
  • 향후 인공위성의 정밀 자세지향 요구가 매우 높아짐에 따라 궤도상의 위성에서 발생하는 고주파 진동인 지터 (Jitter) 의 능동적인 재어가 중요한 문제로 대두되고 있다 . 지터는 탑재체의 성능을 저하시키는 주요 요인이다. 지난 10년간 수동식 및 능동식의 지터 제어 방법이 연구되어 왔다. 본 연구에서는 모텔 장치에 대한 능동식의 지터 분리에 대한 기법을 소개하기로 한다. 모델 장치는 피드백 제어의 원리를 기반으로 3 자유도의 운동을 통해 능동적인 제어가 가능하게 해준다. 이를 위해 시스템의 수학적 모델링을 수행하고 확보된 모델은 기본적인 제어기 설계에 이용된다. 설계된 제어법칙은 시뮬레이션을 통해 그 성능을 검증하도록 한다.

0-1 혼합정수계획법을 이용한 LCD 패널 절단 문제 최적화 (Optimization of LCD Panel Cutting Problem Using 0-1 Mixed Integer Programming)

  • 김기동;박현지;심윤섭;전태보
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.274-279
    • /
    • 2017
  • LCD(Liquid Crystal Display) panel cutting problem is a sort of two dimensional cutting stock problem. A cutting stock problem is problem that it minimizes the loss of the stock when a stock is cut into various parts. In the most research of the two dimensional cutting stock problem, it is supposed that the relative angle of a stock and parts is not important. Usually the angle is regarded as horizontal or perpendicular. In the manufacturing of polarizing film of LCD, the relative angle should be maintained at some specific angle because of the physical and/or chemical characteristics of raw material. We propose a mathematical model for solving this problem, a two-dimensional non-Guillotine cutting stock problem that is restricted by an arranged angle. Some example problems are solved by the C++ program using ILOG CPLEX classes. We could get the verification and validation of the suggested model based on the solutions.