• Title/Summary/Keyword: Mathematical Human Model

Search Result 178, Processing Time 0.027 seconds

Hemodynamic Modeling of the Pulsatile Cardiac Pulmonary Perfusion for the Patient's Heart (환자의 박동형 심장의 폐순환 혈류 모델링에 대한 연구)

  • Kim, J.S.;Kim, M.S.;Choi, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1679-1682
    • /
    • 2008
  • Pulsatile Extracorporeal Membrane Oxygenation(ECMO) can mitigate the heart load and raise the patient's blood perfusion. But If the ECMO pulsate the blood flow during the systolic period, It can burden to the patient's heart. To avoid the heart injury, we have to consider the relation between output of ECMO, hemodynamic states and heart movement. To raise the efficacy of the pulsatile ECMO, we investigated the coronary perfusion, cardiac muscle tension and hemodynamic states during the ECMO perfusion by using the mathematical model of human blood circulatory system and ECMO. The outflow data of the pulsatile ECMO(T-PLS, Bioheartkorea, Korea) was obtained in vitro experiments. According to the phase and pumping rate of the ECMO, the heart's load and coronary perfusion could be adjusted to the proper levels. The results of the human- ECMO lumped parameter model showed that the synchronizing operation of the pulsatile ECLS can be helpful at stabilizing the patient's hemodynamic states.

  • PDF

A Study on Intuitive Model in Mathematics Education (수학교육에서 직관적 모델에 관한 연구)

  • 이대현
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.1
    • /
    • pp.113-121
    • /
    • 2001
  • The purpose of this paper is to investigate the significance and the role of intuitive model and the example of its development. Intuitive model is the tools of intuition in mathematics and the sources for the creative learning mathematics. It consists of the analogical model, paradigmatic model and diagrammatic model. Intuitive model must have a number features in order to be really useful as heuristic devices. It must present a high degree of natural, consistent and structural correspondence with the original. It must also correspond to human information processing characteristics and enjoy a relative autonomy with respect to the original. Sometimes, the difficulty in teaming mathematics stems from the abstractive characteristics of mathematics. So, we have to assist students' learning using the intuitive model that reveals the concrete representation and various changes of mathematical concepts, rules and principles.

  • PDF

Analysis on Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control Part 1: System Model and Kinematic Constraint (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 1: 시스템 모델 및 기구학적 제한)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1106-1114
    • /
    • 2012
  • To achieve synchronized motion between a wearable robot and a human user, the redundancy must be resolved in the same manner by both systems. According to the seven DOF (Degrees of Freedom) human arm model composed of the shoulder, elbow, and wrist joints, positioning and orientating the wrist in space is a task requiring only six DOFs. Due to this redundancy, a given task can be completed by multiple arm configurations, and thus there exists no unique mathematical solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and their effect on the redundancy resolution of the human arm based on a seven DOF manipulator model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing different cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid for the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each two consecutive points along the task space trajectory. As a first step, the redundancy based on the kinematic criterion will be thoroughly studied based on the motion capture data analysis. Experimental results indicate that by using the proposed redundancy resolution criterion in the kinematic level, error between the predicted and the actual swivel angle acquired from the motor control system is less than five degrees.

Modelling and Development of Control Algorithm of Endoscopy

  • Ma, Weichao;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In this paper, basic backgrounds about capsule endoscopy are introduced, and the aims and objectives are also illustrated. Methodology and mathematical model for LuGre model were investigated to analyse system characteristics. A nonlinear friction model, the stick-slip motion system based on LuGre friction model was used to simulate the motion of capsule endoscopy inside human body. Under the different situation, LuGre friction model was simulated by Matlab Simulink software. The entire cycle of motion and the influence of parameters towards to velocity are fully simulated.

  • PDF

Implementation of 3-point Seat Belt Model into ATB Program (ATB 프로그램에서 삼점식 좌석 벨트 모델의 구현)

  • Jeon, Kyu-Nam;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2003
  • Occupant simulation models have been used to study trends or specific design changes in several typical crash situations. The ATB, Articulated Total Body, was developed and used to predict gross human body responses to vehicle crashes and pilot ejections. Since the ATB source code is open to public, the user can add their own defined modules and functions. The introduction of seat belts into cars significantly decreased the injury risk of passengers in frontal impacts. In this paper, a new seat belt model was developed and implemented into the ATB. For this purpose, a subroutine of the new seat belt was constructed. A force-deflection function was added to replace an existing function to consider energy absorption. The function includes hysteresis effects of the experiment data of the loading and unloading parts of the seat belt load-extension curve. Moreover, this belt model considers a slip between ellipsoid and belt segments. This paper attempted to validate the ATB program which includes the subroutine of new belt models comparing with the real car frontal crash experiments and MADYMO frontal models. The analysis focusses on the human movement and body accelerations.

Return on Investment(ROI) Model of Crew Resource Management Training : Reactor Trips' Aspects (Crew Resource Management 교육훈련 투자수익률 모델 : 원자로 불시정지 측면)

  • Kim, Sa-Kil;Byun, Seong-Nam;Lee, Deok-Joo;Lee, Dhong-Hoon;Jeong, Choong-Heui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-184
    • /
    • 2009
  • The Nuclear Power Plant(NPP) industry in Korea has been making efforts to reduce the human errors which have largely contributed to about 150 nuclear reactor trips since 2001. Recently, the Crew Resource Management(CRM) training has risen as an alternative countermeasure against the nuclear reactor trips caused by human errors. The effectiveness of CRM training in NPP industry, however, has not been proven to be significant yet. In this study a return on investment(ROI) model is developed to measure the effectiveness of CRM training for the operators in Korean NPP. The model consists of mathematical expressions including multiple variables affecting the CRM training impacts and nuclear reactor trips. Implication of the model is discussed further in detail.

Analysis of Human Reliability Using Industrial Accidents Data (산업 재해 데이터에 의한 인간신뢰성 분석)

  • Jeong, Won;Seo, Seung-Rok;Im, Wan-Hui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-126
    • /
    • 1998
  • Safety aspect in the manufacturing facility or at the construction site is increasingly emphasized in Korea for last a decade. As a result, the number of industrial accident is decreased slowly by improving the reliability of equipments and human performance through organizational efforts. This paper proposes a mathematical model to estimate and predict the human reliability level corresponding to the worker's job experience. For this purpose, we used the statistics of industrial accidents issued by the Department of Labor in the years of 94-96. The methodology developed in this research will provide a basis for better cost estimation in planning labor policy in the early stage of a project. We believe that this effort would eventually lead to a basis for a new approach to the safety planning.

  • PDF

On the Mathematical Model for Evaluating the Applicability of the Vessel Traffic Management System (우리나라 연안의 해상교통관리시스템 설치를 위한 기초 연구 한국연안의 교통관제대상해역 평가에 관하여)

  • 이상화;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.43-55
    • /
    • 1988
  • The amount of cargoes and fishery production have increased continuously during the last decade due to the great growth of the Korean economy. These increasements have made our coastal traffic congested, and the future coastal traffic is also expected to increase considerably. The increased traffic can be a cause of large sea pollution as well a s greater sea casualties us as properties and human lives, which could result in a big national loss. In order to prevent the sea casualties and promote the safety of coastal traffic, the Vessel Traffic Management System (VTMS) along the Korean coastal waterway is inevitably introduced. But, the precise evaluation is necessary required prior to the implementation of VTMS because this system necessitates a huge amount of budgets. This paper aims to propose the model of evaluation process, but the evaluation as to the urgency of establishment is not only very complicated and fuzzy but also affected by the subjectivity of human. Therefore, fuzzy integral is adopted as the mathematical model of evaluation in which decision-maker can intervence by making decision considering the calculated membership-function. Four aspects, namely, the frequency of sea-casualities, the traffic volume, the frequency fuzzy day, and the complexity of waterway are selected as the item of evaluation, and the fuzzy measure are applied to the evaluation of 8 candidated regions such as the adjacent area to the port Inchen, Kunsan, Mokpo, Wando, Yosu, Pusan, Pohang, Donghae. As a result of evaluation, the priority as to the candidated regions is obtained, and the following prior execution regions, namely, the adjacent area to the port Pusan, Yosu, Mokpo & Wando are selected by considering the present situation, but, in the long run, the VTMS should be executed in the whole coast of the nation, through the cost-effectiveness analysis.

  • PDF

An HIV model with CTL and drug-resistant mutants, and optimal drug scheduling (CTL과 바이러스 변이를 고려한 HIV 모형과 최적 제어를 이용한 약물 투여 전략)

  • Lee, J.H.;Yoon, T.W.
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.135-137
    • /
    • 2009
  • Mathematical models for describing the Human Immunodeficiency Virus(HIV) infection can be devised to better understand how the HIV causes Acquired Immune Deficiency Syndrome(AIDS). The HIV models can then be used to find clues to curing AIDS from a control theoretical point of view. Some models take Cytotoxic T Lymphocytes(CTL) response to HIV infection into account, and others consider mutants against the drugs. However, to the best of our knowledge, there has been no model developed, which describes CTL response and mutant HIV together. Hence we propose a unified model to consider both of these. On the basis of the resulting model, we also present a Model Predictive Control(MPC) scheme to find an optimal treatment strategy. The optimization is performed under the assumption that the Structured Treatment Interruption(STI) policy is employed.

  • PDF

Economic Machining Process Models Using Simulation, Fuzzy Non-Linear Programming and Neural-Networks (시뮬레이션과 퍼지비선형계획 및 신경망 기법을 이용한 경제적 절삭공정 모델)

  • Lee, Young-Hae;Yang, Byung-Hee;Chun, Sung-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.39-54
    • /
    • 1997
  • This paper presents four process models for machining processes : 1) an economical mathematical model of machining process, 2) a prediction model for surface roughness, 3) a decision model for fuzzy cutting conditions, and 4) a judgment model of machinability with automatic selection of cutting conditions. Each model was developed the economic machining, and these models were applied to theories widely studied in industrial engineering which are nonlinear programming, computer simulation, fuzzy theory, and neural networks. The results of this paper emphasize the human oriented domain of a nonlinear programming problem. From a viewpoint of the decision maker, fuzzy nonlinear programming modeling seems to be apparently more flexible, more acceptable, and more reliable for uncertain, ill-defined, and vague problem situations.

  • PDF