The purpose of this study is to improve middle students'mathematical communication ability. We designed the mathematics instruction model based on Vygotsky's ZPD to develop the mathematical communication ability, and applied to 2nd grade students in Middle School. And we investigated the significant differences between the group which was instructed with mathematical communication and the group which was instructed with teacher's traditional explanation in aspects of learning achievement, mathematical disposition, and mathematical communication abilities. The results of the study are as follows : 1. There is no significant difference in learning achievement within significance level .05 between the group which was instructed with mathematical communication and the group which was instructed with teacher's traditional explanation by t-test. 2. There is a significant difference in reflection within significance level .01 and in self-confidence within significance level .10 by MANCOVA. 3. There is a significant difference in mathematical communication ability within significance level .01 between two groups by covariance analysis. In particular, there is a significant difference in reading within significance level .01 and in speaking within significance level .05 by t-test.
Mathematical modeling has been emphasized because it offers important opportunities for students to both apply their learning of mathematics to a situation and to explore the mathematics involved in the context of the situation. However, unlike its importance, mathematical modeling has not been grounded in typical mathematics classes because teachers do not have enough understanding of mathematical modeling and they are skeptical to implement it in their lessons. The current study analyzed the data, such as video recordings, slides, and surveys for teachers, collected in four lessons of teacher education in terms of mathematical modeling. The study reported different kinds of tasks that are authentic with regards to mathematical modeling. Furthermore, in teacher education, teachers' identities have separated a mode as learners and a mode as teachers and conflicts and intentional transition were observed. Analysis of the surveys shows what teachers think about mathematical modeling with their understanding of it. In teacher education, teachers achieved different kinds of modeling tasks and experience them which are helpful to enact mathematical modeling in their lessons. However, teacher education also needs to specifically offer what to do and how to do it for their lessons.
This study, to effectively teach the concepts, principles and problem solving ability of the 2nd graders' learning of numbers and operations, offers realistic problem situation and focuses on the learning based on 'mathematization', one of the most important principles of RME (Realistic Mathematics Education) which is the mathematics education trend of Netherlands influenced by Freudenthal's theory. The instruction is applied to forty-one students of the 2nd grader for six weeks in twelve series in an elementary school, located in Seoul. To investigate the effects of the mathematising experience instruction for improving mathematical abilities, the group takes tests before and after the instruction. Also the qualitative analysis on the students' mathematising aspects through students' output at the instruction process is taken into account to evaluate the instruction's effects. The result shows that the mathematising experience instruction for improving mathematical abilities is proved to improve students' understanding of mathematical concepts and principles and their problem solving ability in learning numbers and operations after carrying out this instruction. Also the result indicates that students' mathematising aspects are mostly horizontal and vertical mathematization.
This article presents new perspectives for analysing and diagnosing students' mathematical errors on the basis of Pascaul-Leone's neo-Piagetian theory. Although Pascaul-Leone's theory is a cognitive developmental theory, its psychological mechanism gives us new insights on mathematical errors. We analyze mathematical errors in the domain of proof problem solving comparing Pascaul-Leone's psychological mechanism with mathematical errors and diagnose misleading factors using Schoenfeld's levels of analysis and structure and fuzzy cognitive map(FCM). FCM can present with cause and effect among preconceptions or misconceptions that students have about prerequisite proof knowledge and problem solving. Conclusions could be summarized as follows: 1) Students' mathematical errors on proof problem solving and LC learning structures have the same nature. 2) Structures in items of students' mathematical errors and misleading factor structures in cognitive tasks affect mental processes with the same activation mechanism. 3) LC learning structures were activated preferentially in knowledge structures by F operator. With the same activation mechanism, the process students' mathematical errors were activated firstly among conceptions could be explained.
In the context of Korean educational research, the number of qualitative research studies has gradually increased since 2000. It has become one of the most important research methods today. The field of math education is no exception to this trend, and qualitative approaches are now becoming one of the main research methods. This increase in qualitative research has contributed to the provision of detailed information about educational practice, but at the same time, the overall level of credibility in the results of qualitative research seems to be lower than that of quantitative research. This study started with the problem consciousness that the number of qualitative studies is increasing in the field of mathematical education, but there is a lack of discussion on the methodology of applying qualitative research methods. In this study, among the papers published in the journal related to mathematical education, papers using a qualitative approach are analyzed focusing on cross-case analysis. Based on the analysis results, the tendency to use qualitative approaches is diagnosed, ways of improving the validity and trustworthiness of qualitative research results in the field of mathematical education are examined, and implications and suggestions are presented.
This study examined the effects of Literature-based Mathematical Activities using scaffolding (LMS) on the mathematical achievement, interest, and vocabulary of day care children. The experimental group of 15 boys and 15 girls was exposed to both literature and teacher's scaffolding while the comparison group of 14boys and 16 girls had traditional mathematics curriculum. The experiment was carried out for 8 weeks. ANCOVA and T-test were employed for a statistical analysis. The results revealed statistically significant differences in mathematical achievement, interest, and vocabulary between an experimental and control groups. We can conclude, therefore, that LMS is more effective in developing children's mathematical thinking abilities than a traditional mathematical curriculum.
Chinese mathematical curriculum is divided 4 areas(number and algebra, space and figure, statistics and probability, practice and synthetic application). The purpose of this paper is to analyze the contents of the practice and synthetic application in yanbian elementary textbook. For this, 12-textbook which was published in yeonbeon a publishing company is analyze by topic, mathematical process, area of content and mathematical activity. mathematical process The following results have been drawn from this study. First, contextual backgrounds of practice are restricted in classroom. The contents of synthetic application are limited in connection of mathematical areas. Mathematical problem solving is a main in mathematical process, whereas reasoning activity is a few. Mathematical experience activity is a main in mathematical process, whereas synthetic activity is a few. We can use the suggestions of this paper for development of textbook and the contents of mathematical process.
The purpose of this study was to investigate the effects of the experiences of productive failures on students' mathematical problem solving abilities and mathematical dispositions. The experiment was conducted with two groups. The treatment group was applied with the productive mathematics failure program, and the comparative group was taught with traditional mathematics lessons. In this study, for quantitative analysis, the students were tested their understanding of mathematical concepts, mathematical reasoning abilities, students' various strategies and mathematical dispositions before and after using the program. For qualitative analysis, the researchers analyzed the discussion processes of the students, students's activity worksheets, and conducted interviews with selected students. The results showed the followings. First, use of productive failures showed students' enhancement in problem solving abilities. Second, the students who experienced productive failures positively affected the changes in students' mathematical dispositions. Along with the more detailed research on productive mathematical failures, the research results should be included in the development of mathematics textbooks and teaching and learning mathematics.
In this paper, we study the continuous wavelet transform on the Heisenberg group H$^n$, and describe the related continuous multiscale analysis. By using the wavelet packet transform we obtain a reconstruction formula on L$^2$(H$^n$).
The aim of this paper is to define hyperholomorphic function with sedenion variables in $\mathbb{C}^8$ and research the properties of hyperholomorphic functions of sedenion variables. We generalize the properties of hyperholomorphic functions in sedenionic analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.