• Title/Summary/Keyword: Maternal gene

Search Result 156, Processing Time 0.039 seconds

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Comparative phylogenetic relationship between wild and cultivated Prunus yedoensis Matsum. (Rosaceae) with regard to Taquet's collection (Taquet 신부의 왕벚나무: 엽록체 염기서열을 통한 야생 왕벚나무와 재배 왕벚나무의 계통학적 비교)

  • Cho, Myong-Suk;Kim, Chan-Soo;Kim, Seon-Hee;Kim, Seung-Chul
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.247-255
    • /
    • 2016
  • As an attempt to determine the identity of the old trees of flowering cherries planted in the yard of the Catholic Archdiocese of Daegu, we conducted comparative phylogenetic analyses between wild and cultivated Prunus yedoensis Matsum. We generated the phylogeny (MP) and haplotype network (TCS) of 25 individuals, including wild P. yedoensis, from Jeju Island, cultivated P. ${\times}$yedoensis 'Somei-yoshino' from Korea and Japan, and P. spachiana f. ascendens (Makino) Kitam. from Jeju Island and Japan based on highly informative sequences of two cpDNA regions (rpl16 gene and trnS-trnG intergenic spacer). The wild and cultivated P. yedoensis were distinguished from each other in both the phylogeny and haplotype networks, and the old flowering cherry trees in Daegu had a cpDNA haplotype identical to that of the cultivated P. ${\times}$yedoensis 'Someiyoshino'. Compared to the cultivated P. ${\times}$yedoensis 'Somei-yoshino', wild P. yedoensis appears to have greater haplotype diversity, presumably originating from the genetic diversity of P. spachiana f. ascendens that functioned as a maternal parent in the hybrid origin of wild P. yedoensis. A future detailed study requires extensive sampling of P. spachiana f. ascendens from Japan and Korea to determine their precise phylogenetic relationships relative to wild and cultivated P. yedoensis. We concluded that the old flowering cherry trees planted in the yard of the Catholic Archdiocese of Daegu are highly likely to be of cultivated origin rather than wild types from Jeju Island, as previously speculated.

CLEIDOCRANIAL DYSPLASIA WITH FAMILIAL HISTORY - A CASE REPORT (가족력을 보이는 쇄골두개 이형성증에 관한 증례보고)

  • Hwang, Ji-Young;Choi, Sung-Chul;Lee, Keung-Ho;Kim, Kwang-Chul;Park, Jae-Hong
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.4 no.2
    • /
    • pp.82-87
    • /
    • 2008
  • Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia and is caused by mutation in the CBAFA1 gene of 6p21 chromosome band. Patients with CCD express skeletal dysplasia such as hypoplastic/aplastic clavicle, brachycephalic skull, midface hypoplasia and moderate short stature. In addition to skeletal dysplasia, specific symptoms may appear in respiratory organs, auditory area, and the more distinguished, dentition. Dental findings include: delayed eruption of permanent tooth, multiple supernumerary tooth more than five, malocclusion, etc. In Patients presenting excessive SNT, complications of SNT could be prevented and will be managed through pertinently timed treatment such as tooth extraction, using space maintainer, and orthodontic management after early diagnosis. This case is about the treatment of eruption disorders in permanent teeth owing to SNT in CCD patients, who are three family members in the $3^{rd}$ generation inherited from maternal grandfather through atavism. We performed the extraction of numerous SNT and orthodontic treatment on them in this case. On evaluating panoramic and cephalometric views, some classical signs of skeletal dysplasia due to CCD were recognized in a pool of three patients, the clavicle was distinctively displayed in all patients.

  • PDF

Characterization of Embryo-specific Autophagy during Preimplantation (착상전 난자 자식작용의 특성규명)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3541-3546
    • /
    • 2011
  • Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles in addition to recycling protein and ATP synthesis. Although autophagy is very important during embryogenesis, the mechanism underlying the dynamic development during this process remains largely unknown. In order to obtain insights into autophagy in early embryo development, we analyzed gene expression levels of autophagy-related genes (ATGs) in mouse embryos developing in vitro. Using real time RT-PCR technique, ATGs including Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, and Wipi3, as maternal transcripts, were only up-regulated in 1-cell embryo stage before zygotic genomic activation (ZGA), and then expression decreased from 2-cell to blastocyst embryo stage. ATGs including Dram and Atg9b were expressed abundantly in 1-cell embryo state and in blastocyst embryo stage, athough Atg8 and Ulk1 were constantly expressed during preimplantation stage. However, Atg4d were only up-expressed from 4-cell to blastocyst stage. These results suggest that autophagy is related in mouse embryo, which possibly gives an important role for early development.

Usefulness of Biochemical Analysis for Human Skeletal Remains Assigned to the Joseon Dynasty in Oknam-ri Site in Seocheon, Korea (조선시대 인골에 대한 생화학적 분석의 유용성: 서천군 옥남리 회곽묘 출토 인골을 중심으로)

  • Kang, So-Yeong;Kwon, Eun-Sil;Moon, Eun-Jung;Cho, Eun-Min;Seo, Min-Seok;Kim, Yun-Ji;Jee, Sang-Hyun
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.95-107
    • /
    • 2010
  • Biochemical research was carried out on 4 human skeletal remains from historical lime-layered tombs assigned to the Joseon Dynasty in Oknam-ri, Seocheon. The preservation of femur was evaluated by stereoscopic microscopy and scanning electron microscopy. Most of specimens showed good histological preservation. The histological results proved to be a good potentiality for biochemical analysis using bio-molecules. The amelogenin gene and mitochondrial DNA (mtDNA) analyses revealed that three specimens perhaps have maternal consanguinity due to sharing with mtDNA haplogroup D4b1, and two specimens buried in the same tomb were a couple in Gatjaegol site. Carbon and nitrogen stable isotope analysis indicated that four deads diet were built around C3 plant as rice, barley, wheat and bean. In this study we characterized genetic and diet features from the social stratum who could make lime-layered tombs during period of the Joseon Dynasty. The results suggest that biochemical research using the human skeletal remains from the Joseon Dynasty has the great potential and reasonable value for archaeology, anthropology, and population genetics.

Folate Deficiency and FHIT Hypermethylation and HPV 16 Infection Promote Cervical Cancerization

  • Bai, Li-Xia;Wang, Jin-Tao;Ding, Ling;Jiang, Shi-Wen;Kang, Hui-Jie;Gao, Chen-Fei;Chen, Xiao;Chen, Chen;Zhou, Qin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9313-9317
    • /
    • 2014
  • Fragile histidine triad (FHIT) is a suppressor gene related to cervical cancer through CpG island hypermethylation. Folate is a water-soluble B-vitamin and an important cofactor in one-carbon metabolism. It may play an essential role in cervical lesions through effects on DNA methylation. The purpose of this study was to observe effects of folate and FHIT methylation and HPV 16 on cervical cancer progression. In this study, DNA methylation of FHIT, serum folate level and HPV16 status were measured using methylation-specific polymerase chain reaction (MSP), radioimmunoassay (RIA) and polymerase chain reaction (PCR), respectively, in 310 women with a diagnosis of normal cervix (NC, n=109), cervical intraepithelial neoplasia (CIN, n=101) and squamous cell carcinoma of the cervix (SCC, n=101). There were significant differences in HPV16 status (${\chi}^2=36.64$, P<0.001), CpG island methylation of FHIT (${\chi}^2=71.31$, P<0.001) and serum folate level (F=4.57, P=0.011) across the cervical histologic groups. Interaction analysis showed that the ORs only with FHIT methylation (OR=11.47) or only with HPV 16 positive (OR=4.63) or with serum folate level lower than 3.19ng/ml (OR=1.68) in SCC group were all higher than the control status of HPV 16 negative and FHIT unmethylation and serum folate level more than 3.19ng/ml (OR=1). The ORs only with HPV 16 positive (OR=2.58) or with serum folate level lower than 3.19ng/ml (OR=1.28) in CIN group were all higher than the control status, but the OR only with FHIT methylation (OR=0.53) in CIN group was lower than the control status. HPV 16 positivity was associated with a 7.60-fold increased risk of SCC with folate deficiency and with a 1.84-fold increased risk of CIN. The patients with FHIT methylation and folate deficiency or with FHIT methylation and HPV 16 positive were SCC or CIN, and the patients with HPV 16 positive and FHIT methylation and folate deficiency were all SCC. In conclusion, HPV 16 infection, FHIT methylation and folate deficiency might promote cervical cancer progression. This suggests that FHIT may be an effective target for prevention and treatment of cervical cancer.

Expressions of MicroRNA-150 and MicroRNA-424 Targeted to C-reactive Protein in Trophoblast Cell Line (영양막세포에서의 C-reactive protein 조절 microRNA-150과 microRNA-424 발현 분석)

  • Kim, Hee Sung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.375-382
    • /
    • 2019
  • Abnormalities of trophoblast due to early inflammation in pregnancy increase the expression of CRP and affect maternal-fetal interactions, leading to preterm birth and preeclampsia. However, biomarkers related to the regulation of CRP expression have not been found. In this study, miRNA associated with increased expression of CRP was identified and their expression was analyzed to reveal biomarkers involved in the regulation mechanism of trophoblast inflammation through miRNAs. miRNAs that were predicted to regulate CRP gene expression in miRNA databases (mirna, TargetScan, MicroCosm) were screened and HTR-8/SVneo cell lines were treated with LPS (20 ng/mL) to induce inflammatory responses in vitro, with selected miR-7, miR-150, miR-186 and miR-424. The expression was analyzed by qRT-PCR. As a result, expression of CRP was significantly increased in LPS-treated trophoblast (p<0.001) and miR-150 and miR-424 expression were significantly decreased (p<0.001). Thus, miR-150 and miR-424 are involved in the regulation of CRP expression in inflammatory-induced trophoblast and may be useful for the prenatal diagnosis of inflammatory obstetric diseases.

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) (안정적 감자 엽록체 형질전환 식물체 생산)

  • Min, Sung-Ran;Jeong, Won-Joong;Park, Ji-Hyun;Lyu, Jae-Il;Lee, Jeong-Hee;Oh, Kwang-Hoon;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.

The Robust Phylogeny of Korean Wild Boar (Sus scrofa coreanus) Using Partial D-Loop Sequence of mtDNA

  • Cho, In-Cheol;Han, Sang-Hyun;Fang, Meiying;Lee, Sung-Soo;Ko, Moon-Suck;Lee, Hang;Lim, Hyun-Tae;Yoo, Chae-Kyoung;Lee, Jun-Heon;Jeon, Jin-Tae
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.423-430
    • /
    • 2009
  • In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.

Molecular phylogenetic relationships and speciation of Ranunculus cantoniensis (Ranunculaceae) (털개구리미나리(Ranunculus cantoniensis)의 분자계통학적 유연관계 및 종분화)

  • Lee, Chang Shook;Lee, Nam Sook;Yeau, Sung Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.4
    • /
    • pp.335-358
    • /
    • 2004
  • To investigate molecular phylogenetic relationships and to test hypothesis of hybrid origin of Ranunculus cantoniensis (Ranunculaceae), the sequences of nrDNA and chloroplast DNA were analyzed for 8 taxa and 25 accessions including 5 accessions of outgroup. In the phylogenetic trees by analyses of maximum parsimony and maximum likelihood for ITS nrDNA sequences and combined data of psbA-trnH, rps16 and trnL sequences of cpDNA, R. cantoniensis was most closely related to R. chinensis, and then to R. taciroi and R. silerifolius. The molecular phylogenetic relationships were not congruent with the previous report that R. cantoniensis was most closely related to R. silerifolius. In the sequence analysis of ITS and psbA-trnH, rps16, trnL for R. cantoniensis and the related taxa, R. cantoniensis showed polymorphism. It supported that the polymorphism also was reported in chromosome number and karyotype of R. cantoniensis. Ranunculus cantoniensis shared the marker gene of R. chinensis and R. silerifolius in ITS, and one of R. silerifolius in cpDNA. These results supported the hypothesis that R. cantoniensis was caused by hybridization between R. chinensis and R. silerifolius based on chromosome number and karyotype, and also estimated that R. silerifolius might be of maternal origin and R. chinensis be paternal.