• Title/Summary/Keyword: Materials science and engineering

Search Result 16,348, Processing Time 0.057 seconds

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

Development of Natural and Ecological Wastewater Treatment System for Decentralized Regions and Rural Communities (분산지역 및 농촌마을 하수처리를 위한 자연정화 고도처리 공법 개발)

  • Kim, Song-Bae;Kwon, Tae-Young;Han, Jung-Yoon;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.489-497
    • /
    • 2006
  • The feasibility of the Natural and Ecological Wastewater treatment System (NEWS) was examined for rural wastewater treatment in Korea. The intermittent trickling biofilter with high hydrophilic filter media was used for pretreatment for suspended solids and organic pollutants. The subsequent constructed wetland with porous granule materials was used for promoting nutrient removal. The results show that the removal efficiencies of the system were high with respect to the water quality parameters except COD. Even if the effluent from the biofilter did not meet the guidelines for wastewater treatment plant effluent in Korea in terms of $BOD_5$ and TN, the final effluent of the system meets the guidelines us to good performance of the constructed wetland. The regression analysis between pollutant loading rate and removal rate indicated that the system could have stable removal for SS, $BOD_5$, TN, and TP in the given influent ranges. The analysis in the winter period indicated that the wetland covered with transparent polycarbonate glass had the statble performance during the winter period dus to increase of temperature inside the wetland without any heating system. With the stable performance, effective poilutant removal, low maintenance, and cost-effectiveness, the NEWS could be considered as an alternative treatment system for decentralized regions and rural communities in Korea.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

A Study on the Basic Investigation for the Fire Risk Assessment of Education Facilities (교육시설 화재위험성 평가를 위한 기초조사에 관한 연구)

  • Lee, Sung-Il;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.351-364
    • /
    • 2021
  • Purpose: Fire load analysis was conducted to secure basic data for evaluating fire risk of educational facilities. In order to calculate the fire load through a preliminary survey, basic data related to the fire load of school facilities were collected. Method: The basic data were the definition and types of fire loads, combustion heat data for the calculation of fire loads. The fire load was evaluated by multiplying the combustion heat by the weight of the combustibles in the compartment when calculating the fire load. Result: As for the fixed combustible materials of A-elementary school, the floor was mainly made of wood, in consideration of emotion and safety in the classroom, music room, and school office, and the rest of the compartments were made of stone. The ceiling and walls were made of gypsum board and concrete, so they were not combustible. The typical inflammable items in each room were desks, chairs, and lockers in the classroom, and the laboratory equipment box and experimental tool box were the main components in the science room, and books, bookshelves, and reading equipment occupied a large proportion in the library room. Conclusion: 'The fire loads of A-elementary' schools according to the combustibles loaded were in the order of library, computer room, English learning room, teacher's office, general classroom, science hall, and music room.

Physicochemical Properties of Jadeite Powder and Its Application to Cosmetic Formulations (경옥가루의 물리화학적 특성 및 화장품 제형 응용 연구)

  • Kim, Kyoung Mi;Kim, Yong Woo;Hong, In Gi;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.81-96
    • /
    • 2018
  • In this study, physicochemical properties of the natural jadeite powder were investigated and also the wash-off pack and liquid foundation containing the jadeite powder were prepared. In addition, each of these formulations was evaluated by various functional effects, sensory evaluation, stability and skin safety. In the wash-off pack, the far-infrared ray emissivity and radiation energy values increased as a function of the jadeite powder content. At a 3% jadeite powder content, the skin temperature increased by about $0.5^{\circ}C$ when the jadeite powder-containing formulation was applied to the skin. Besides, the chroma of the liquid foundation containing the jadeite powder more clearly expressed the original color of the skin. Moisture content measurements of the wash-off pack and liquid foundation containing the jadeite powder showed the highest moisture uptake of 5.0% and 63.0%, respectively. In sensorial test, the wash-off pack formulations containing the jadeite powder demonstrated improved affinities toward a skin, adherency, and moistness and combatted itching. The liquid foundation containing jadeite powder showed also improved affinities except for the coverage when compared to control formulations. Furthermore, the stability evaluation for 8 weeks revealed neither discoloration nor separation phenomenon for the formulations containing the jadeite powder. Moreover, the pH was found to be stable up to 8 weeks and the viscosity up to 4 weeks. Skin safety assessments showed that all formulations containing the jadeite powder were non-irritating. These results suggest that the jadeite powder as an inorganic pigment may serve as a new multi-functional cosmetic ingredient with stability and safety.

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF

SiO2 Behavior of MoSi2 Powders Containing SiO2 Synthesized by SHS Method (자전연소합성법으로 제조된 SiO2 첨가된 MoSi2 분말 내에서의 SiO2의 거동 연구)

  • Rha, Sa-Kyun;Jeon, Min-Seok;Song, Jun-Kwang;Han, Dong-Bin;Jeong, Cheol-Weon;Kim, Sung-Soo;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.559-564
    • /
    • 2011
  • In order to investigate the behavior of $SiO_2$ in the molybdenum silicide powders, crystal structure of these powders was measured by XRD, in addition, surface composition and surface phase (or chemical states) and microstructure were analysed by XPS and TEM, respectively. Mo-silicide powders containing $SiO_2$ were synthesized by SHS (Self-Propagating High-Temperature Synthesis) technique. In XRD result, according to increase of $SiO_2$ contents, the crystal structure for synthesized $MoSi_2$ powders was still typical $MoSi_2$ bct without any other phases. By XPS analysis, the surface of Mo and Si source powders was covered with $MoO_3$ and $SiO_2$, respectively, and the surface of synthesized $MoSi_2$ powder was also covered with $MoO_3$ and $SiO_2$, which were stable oxides at room temperature. However, according to increase of $SiO_2$ addition, $MoSi_2$ phase in XPS spectra decreased and $SiO_2$ phase increased relatively in synthesized $MoSi_2$ powders. From the results by XPS and XRD, we found that the existent $SiO_2$ has amorphous structure. In the microstructure, the small particulates of the synthesized products added $SiO_2$ agglomerated together to form larger clusters (from ~10 nm to ~1 ${\mu}m$). From TEM, XPS, and XRD results, we found that the out layer of agglomeration of synthesized $MoSi_2$ powder is surrounded by amorphous $SiO_2$.

A Numerical Study of the Combustion Characteristics in a MILD Combustor with the Change of the Fuel and Air Nozzle Position and Air Mass Flow Rate (연료 및 공기 노즐 위치와 공기 유량 변화에 따른 MILD 연소 특성에 관한 해석적 연구)

  • Kim, Tae-Kwon;Shim, Sung-Hoon;Chang, Huyk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.325-331
    • /
    • 2011
  • A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the change of fuel and air nozzle position and air mass flow rate. For the case with the fuel nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively smaller. On the other hand, the end of reaction zone moved toward center of combustor from combustor wall when the air flow rate was relatively larger. For the case with the air nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively small, which was similar as the previous case with smaller air mass flow rate. On the other hand, the end of reaction zone moved toward combustor wall when the air flow rate was relatively larger. The maximum temperature increased as the air mass flow rate increasing for both cases, and the concentration of thermal NOx increased also from the previous reason of temperature characteristics. The concentration of NOx for the case with the air nozzle located near center position of combustor was considerably smaller than that for the case with the fuel nozzle located near center position of combustor. From the present study, the case with the air nozzle located near center position of combustor and theoretical air flow rate was the most effective condition for the NOx reduction and perfect combustion.

Preparation and Characterization of Demineralized Bone Particle-loaded PLGA Scaffold for Tissue Engineered Bone (조직공학적 골재생을 위한 탈미넬화된 골분을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang Ji Wook;Lee Bong;Han Chang Whan;Kim Mun Suk;Cho Sun Hang;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.382-390
    • /
    • 2004
  • One of the significant natural bioactive materials is demineralized bone particle (DBP) whose has a powerful induce. of new bone growth. In this study, we developed the DBP loaded poly-lactide (PLA) and poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. PLA/DBP and PLGA/DBP scaffolds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy. BMSCs were stimulated by osteogenic medium and characterized by histological stained Wright-Giemsa, Alizarin red, von Kossa, and alkaline phosphate activity (ALP). DBP impregnated scaffolds with BMSCs were implanted into the back of athymic nude mouse to observe the effect of DBP on the osteoinduction compared with control scaffolds. It can be observed that the porosity was above $90.2\%$ and the pore size was above 69.1$\mu$m. BMSCs could be differentiated into osteoprogenitor cells as result of wright-giemsa, alizarin red, von Kossa and ALP staining. In in vivo study, we could observed calcification region in PLA/DBP and PLGA/DBP groups, but calcification did not occur almost in control scaffolds. From these results, it seems that DBP as well as BMSCs play an important role for bone induction in PLA/DBP and PLGA/DBP scaffolds.

Influence of varying cement types and abutment heights on pull-off force of zirconia restorations (시멘트의 종류 및 임플란트 지대주 높이가 지르코니아 수복물의 제거력에 미치는 영향)

  • Yeong-Jun Jung;Yu-Lee Kim;Ji-Hye Jung;Nae-Un Kang;Hyun-Jun Kong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.64-71
    • /
    • 2024
  • Purpose: The purpose of this study is to evaluate Ti-base abutment's three different heights and three different cement types on the pull-off force of zirconia-based restorations. Materials and Methods: A total of 90 fixture lab analogs were embedded in auto polymerizing resin bloack. 90 Ti-base abutments heights of 3 mm, 5 mm, 7 mm were scanned and zirconia restoration were prepared from scanned files. Zirconia restoration were cemented with three different types of cements (temporary, semi-permanent, permanent) following manufacturer's instructions. All 90 specimens were placed and tested in a universal testing machine for pull-out testing. Retention was measured by recording the force at load drop. Statistical analysis was performed using Kruskal-Wallis test for detecting whether there are any statistical significance along cement types or abutment heights. After that, Mann-Whitney test was used for figuring out differences regarding abutment height and the comparison between 3 cements. Results: Temp bond showed significantly lower pull-off force compared to Fujicem regardless of any abutment height. However, there were significant differences between Cem-implant and Fujicem in abutment height of 3 mm and 7 mm, but there was no significant difference in 5 mm. Temp bond and Cem-implant had significant differences only in abutment height of 5 mm. Conclusion: Although Ti-base abutment height did not influenced zirconia restorations' retentiveness, cement types showed significant differences.