DOI QR코드

DOI QR Code

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers

충전재에 의한 지오폴리머의 고온수축 감소효과

  • Cho, Young-Hoon (Department of Resources Recycling, Korea University of Science and Technology) ;
  • An, Eung-Mo (Department of Architecture Engineering, LEEOH Construction company) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea institute of Geoscience and Mineral Resources) ;
  • Lee, Sujeong (Department of Resources Recycling, Korea University of Science and Technology)
  • 조영훈 (과학기술연합대학원대학교 자원순환공학) ;
  • 안응모 ((주) 이오종합건설 건축팀) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부) ;
  • 이수정 (과학기술연합대학원대학교 자원순환공학)
  • Received : 2016.11.07
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.

지오폴리머는 메타카올린 혹은 석탄재와 같은 알루미노실리케이트 원료를 알칼리 활성화제와 반응시켜 제조된 비정질 무기 폴리머로서 포틀랜드 시멘트보다 우수한 내열성을 보인다. 지오폴리머의 고온 수축률은 $600^{\circ}C$까지는 0.5 %이하 ~ 3 %정도이며 용융되기 전까지 총 수축률은 5 ~ 7 %정도이다. 본 연구는 Si/Al비 1.5인 지오폴리머 페이스트에 탄소 나노 섬유, 탄화규소, 파이렉스 유리, 질석 및 ISO 표준사를 첨가하여 지오폴리머의 압축강도와 고온 수축에 미치는 효과를 알아보았다. 탄소 나노 섬유, 탄화규소, 파이렉스 유리와 질석이 첨가된 지오폴리머의 압축강도는 35 ~ 40 MPa범위로 유사하였다. ISO 표준사를 30 wt.% 첨가한 지오폴리머 모르타르의 평균 압축강도는 28 MPa로 가장 낮았다. ISO 표준사를 첨가하면 압축강도는 감소하였고 고온 수축률은 페이스트 수축률의 약 25 %까지 감소되었다. 이는 석영이 대부분인 잔골재 입자가 팽창하여 지오폴리머 겔 조직의 수축을 보상하였기 때문이다. 충전재의 종류와 관계없이 $900^{\circ}C$ 가열 후 지오폴리머 겔 조직은 소결현상에 의해 치밀해졌다.

Keywords

References

  1. Rickard, W.D.A., van Riessen, A., 2010 : Thermal Character of Geopolymers Synthesized from Class F Fly ash Containing High Concentrations of Iron and ${\alpha}$-Quartz, International Journal of Applied Ceramic Technology, 7(1), pp. 81-88. https://doi.org/10.1111/j.1744-7402.2008.02328.x
  2. An, E.M., Cho, Y.H., Chon, C.M., Lee, D.J., Lee, S.J., 2015 : Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash, Journal of the Korean Ceramic Society, 52(4), pp. 253-263. https://doi.org/10.4191/kcers.2015.52.4.253
  3. Dombrowski, K., Buckwald, A., Weil, M., 2007 : The influence of calcium content on the structure and thermal performance of fly ash based geopolymers, Journal of Material Science, 42, pp. 3033-3043. https://doi.org/10.1007/s10853-006-0532-7
  4. Kong, D.L.Y., Sanjayan, J.G., 2008 : Damage behavior of geopolymer composites exposed to elevated temperatures, Cement & Concrete Composites, 30, pp. 986-991. https://doi.org/10.1016/j.cemconcomp.2008.08.001
  5. Duxson, P., Luckey, G.C., van Deventer, J.S.J., Davidovits, J. (ed), 2006 : Geopolymer, green chemistry and sustainable development solutions, Proceedings of the world congress of geopolymer 2005, Saint-Quentin, France, pp.189-194
  6. Rickard, W.D.A., 2012 : Assessing the suitability of fly ash geopolymers for high temperature applications, Ph.D. Curtin University, Faculty of Science, Department of Imaging and Applied Physics.
  7. Temuujin, T., Rickard, W.D.A., Lee, M., van Riessen, A., 2011 : Preparation and thermal properties of fire resistant metakaolin based geopolymer type coatings, Journal of Non-Crystalline Solids, 357, pp. 1399-1404. https://doi.org/10.1016/j.jnoncrysol.2010.09.063
  8. Vickers, L., Rickard, W.D.A., van Riessen, A., 2014 : Strategies to control the high temperature shrinkage of fly ash based geopolymers, Thermochimica Acta, 580, pp. 20-27. https://doi.org/10.1016/j.tca.2014.01.020
  9. Lin, T.S., Jia, D.C., He, P.G., Wang, M.R., 2009 : Thermomechanical and microstructural characterisation of geopolymers with alpha alumina particulate filler, International Journal of Thermophysics, 30, pp. 1568-1577. https://doi.org/10.1007/s10765-009-0636-9
  10. Kamseu, E., Rizzuti, A., Leonelli, C., Perera, D., 2010 : Enhanced thermal stability in $K_2O$- metakaolin-based geopolymer concretes by $Al_2O_3\;and\;SiO_2$ fillers addition, Journal of Materials Science, 45, pp. 1715-1724. https://doi.org/10.1007/s10853-009-4108-1
  11. Silva, F.J., Mathias, A.F., Thaumaturgo, C., 1999 : Evaluation of the fracture toughnessin poly (sialate-siloxo) composite matrix, conference paper, Geopolymer, 99, pp. 97-106.
  12. Medri, V., Papa, E., Mazzocchi, M., Laghi, L., Morganti, M., Francisconi, J., Landi, E., 2015 : Production and characterization of lightweight vermiculite/geopolymer-based panels, Materials and Design, 85, pp. 266-274. https://doi.org/10.1016/j.matdes.2015.06.145
  13. Sanchez, F., Ince, C., 2009 : Microstructure and macroscopic properties of hybrid carbon nanofiber /silica fume cement composites, Composites Science and Technology, 69, pp. 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006
  14. Subaer, A., van Riessen, A., 2007 : Thermo-mechanical and microstructural characterisation of sodium-poly(sialate-siloxo) (Na-PSS) geopolymers, Journal of Materials Science, 42, pp. 3117-3123. https://doi.org/10.1007/s10853-006-0522-9
  15. Pradere, C., Sauder, C., 2008 : Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperature (300-2500 K), CARBON, 46, pp. 1874-1884. https://doi.org/10.1016/j.carbon.2008.07.035
  16. Harris, G.L., 1995 : Properties of silicon carbide, An inspect publication, Materials Science Research Center of Excellence Howard University, Washington DC, USA, pp. 19.
  17. Weissler, G.L., 1979 : Vacuum Physics and Technology, Academic Press, New York, USA, pp. 315.
  18. Oka, F., Murakami, A., Uzuoka, R., Kimoto, S., 2014 : Computer methods and recent advanced in geomechanics, CRC Press/Balkema, Lundon, UK, pp. 1743.
  19. Koksal, F., Gencel, O., Brostow, W., Hagg Lobland, H.E., 2012 : Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite, Materials Research Innovations, 16(1), pp. 7-13. https://doi.org/10.1179/1433075X11Y.0000000020
  20. Kang, N.H., 2014 : Effect of characteristics of fly ash from coal-fired power plant on compressive strength of geopolymers, M.S., University of Science and Technology, Department of Resources Recycling.
  21. Williams, R.P., van Riessen, A., 2010 : Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel, 89, pp. 3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031
  22. Kang, S.T., Park, S.H., 2014 : Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites. Journal of the Korea Concrete Institute, 26(1), pp. 63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  23. El-Gamal, S.M.A., Hashem, F.S., Amin, M.S., 2012 : Thermal resistance of hardened cement paste containing vermiculite and expanded vermiculite, Journal of Thermal analysis and Calorimetry, 109, pp. 217-226. https://doi.org/10.1007/s10973-011-1680-9
  24. Cho, Y.H., An, E.M., Lee, S.J., Chon, C.M., Kim, D.J., 2016 : Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete, Journal of the Korean Recycled Construction Resources Institute, 4(2), pp. 101-111. https://doi.org/10.14190/JRCR.2016.4.2.101