• Title/Summary/Keyword: Materials recycling

Search Result 1,715, Processing Time 0.035 seconds

Research on Materials Characteristics of high adhesive Self Adhesion Waterproofing Material using by the Eco-friendly Resource Recycling and Resource Waste (친환경 자원재활용 재료와 폐자원을 이용한 고점착 자착식 방수시트재의 재료적 특성에 관한 실험적 연구)

  • Heo, Neung-Hoe;Choi, Eun-Gyu;Kim, Su Ryon;Kim, Jin-Sung;Lee, Jong-Yong;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.291-293
    • /
    • 2012
  • Recently, environmental pollution and global warming and greenhouse gases are increasing, because Efforts to improve are continued throughout the world. As part of the resource recycling industry has become an important research area. In the field of waterproofing industry, focus on the resource recycling is growing, due to serious resource depletion and sharp price. Therefore, in this research on the resource recycling such as reclaimed rubber and rubber waste is enable and these eco-friendly materials are applied high adhesive flexible non-exposed type self adhesion compound waterproofing material was measured eco-friendly performance and field application was evaluated.

  • PDF

Optimal Order Quantity Models for three types of reverse logistics networks in Product Recovery Environment

  • Kim Juyong;Kim Kibum;Jeong Bongju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.565-565
    • /
    • 2004
  • Due to limitation of resources and increasing concerns about environment, reverse logistics has received growing attention in recent years. In this paper, we propose three types of reverse logistics networks based on reuse of returnable containers, materials recycling process and remanufacturing for parts reuse. First, the sender in the re-usable item network supplies containers for the recipient and orders either new containers from external supplier or returnable containers cleaned from the container depot. Second, the recycling center in the proposed recycling network collects either end of life products from customer or faulty goods from manufacturer, collected products are dismantled into materials and materials go into recycling process. Finally, the manufacturer in the proposed remanufacturing network has two alternatives for supplying parts: either ordering the required parts to external supplier or overhauling disassembled parts and bringing them back 'as new' conditions. In this product recovery environment, we build optimal order quantity models to minimize the total logistics costs related to reverse logistics network. The validity of the proposed model is investigated through comprehensive computational experiments.

  • PDF

Current Status of Smelting and Recycling Technologies of Tungsten (텅스텐의 제련과 리사이클링 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.342-351
    • /
    • 2021
  • Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

Survey on the Recycling of Waste Slag Generated by Smelting Reduction of Deep-Sea Manganese Nodules (망간단괴 용융환원 폐슬래그의 재활용 방안)

  • Park, Hyungkyu;Nam, Chulwoo;Kim, Sungdon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Slags generated in the smelting reduction of deep sea manganese nodule could be utilized as an additional materials for making Fe-Si-Mn alloys by mixing with cokes and re-smelting at an arc furnace. In this re-melting process slag is also generated, and the secondary slag is treated as waste. In this survey, recycling of the waste slag of Mn nodule was studied. It is tried to utilize the waste slag as ceramic materials or construction materials. However, it is difficult to use the waste slag directly as an additional material to ceramics such as portland cement or castable refractory material due to the much difference of chemical compositions. As an altercation road constructing material is considered, and toxicity on the soil of the waste slag was tested according to Korean Standard for testing permissible amount of toxic substances. The test result was satisfied with the requirements on the standard. So, it should be suggested that the waste slag of the Mn nodule could be utilized as constructing materials such as road filler or base materials.