• 제목/요약/키워드: Materials for fire resistance

검색결과 219건 처리시간 0.024초

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권3호
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.

Performance Based Fire Engineering in Japan

  • Kohno, Mamoru;Okazaki, Tomohito
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.23-30
    • /
    • 2013
  • This paper explains the Japanese present situations relevant to the fire resistance performance. Performance-based fire provisions was introduced in 1998 for the first time when the Building Standard Law was amended. However, performance-based fire resistance design had been used since long before the official introduction of performance-based provisions. A Comprehensive Technology Development Project of Ministry of Construction from 1982 to 1986 established a technical basis for performance-based fire safety engineering in Japan. A system of calculation methods for fire resistance verification was prescribed in the Ministry Notification in 2000 utilizing the results of this project as a background. This method, referred to as the Fire Resistance Verification Method (FRVM), is the standard method to verify the fire resistance performance of principal building parts such as columns, beams, and walls of steel, concrete, or wood structured buildings. For tall buildings, however, more advanced method for performance verification is often necessary because new building materials or structural systems are often used for these buildings. An example project of tall building owned by a major newspaper company is presented in this paper. Advanced thermal deformation analysis is executed to secure the fire resistance of the building.

방화용 실런트 성능 평가 방법 연구 (A study for the test method of fire resistance construction sealant)

  • 안명수;정진영;배기선
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.179-182
    • /
    • 2013
  • Many kinds of fire-stop sealants have been used for joint sealing, cable penetration part sealing and fireproof structure finishing etc in building sectors which need water-proofing and fire-stop properties. But, fire-stop sealant itself has no specific industry standards in Korea even though there are so many required properties for the application. So, in this study, for the evaluation, we adopted and applied UL standard 94(UL 94) which is commonly used for the fire retardant testing in inflammable materials like plastics and rubbers in electronics industry. In this study, we demonstrated fire resistance properties of each fire-stop sealants which varied with different formulation, thickness and origins available in Korea. Overall, fire stop sealant had better fire resistance performance than normal construction sealant. And the thicker the material, the better the fire resistance performance was. Because there is no national or industry guideline for fire stop sealant itself, each sealant products showed different level of performances under UL94 desigation. Even certain product had very poor fire proof propeties although it claims it can be used for the application.

  • PDF

Safety Evaluation of Fire Resistant Extruded Panel for Partition Wall System

  • Choi, Duck-Jin;Kim, Jin-Man
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.586-595
    • /
    • 2012
  • While the extruded cement panel has many advantages compared to drywall, it has limited applicability in buildings due to its low fire resistance. However, an extruded panel in which the fire resistance has been dramatically enhanced through the addition of a-hemihydrate gypsum is expected to become widely applied as a partition wall or interior material for buildings. To ensure its applicability, certain safety requirements for use, such as the leaning load by residents, the impact by indoor articles, and the fire, need to be taken into consideration. The purpose of this study is to review the impact load resistance, horizontal load resistance, and fire resistance as required safety properties for the partition wall and interior materials of the extruded panel that includes a-hemihydrate gypsum. The results of this study show that the impact load resistance of the extruded panel that includes a-hemihydrate gypsum achieves SD grade for industrial buildings, and the horizontal impact load resistance achieves HD grade for public buildings. In addition, it provides fire-resistance for approximately 7 minutes longer than the existing extruded cement panel. Based on this result, it is confirmed the extruded panel incorporating a-hemihydrate gypsum has adequate safety properties for use as partition wall or interior material.

화재하중밀도를 고려한 건축물의 내화설계법에 관한 연구 (A Study on the Fire Resistance Design of Buildings Considering the Fire Load Energy Density)

  • 이평강;이용재;최인창;김회서
    • 한국화재소방학회논문지
    • /
    • 제17권2호
    • /
    • pp.10-16
    • /
    • 2003
  • 본 연구의 목적은 성능위주의 화재안전설계법에 따른 구획실 용도별 요구내화시간산정을 실시함으로써 현행 내화성능기준의 문제점도출 및 개선방향을 제시하는 것이다. 내화성능기준에 대한 검토를 위해 본 연구에서는 현재 국내의 시방규정에 의해 결정된 요구내화시간과 등가시간공식에 의해 산정된 화재노출상응시간과 비교하였고, 화재노출상응시간을 산정하기 위해 화재하중밀도, 환기계수, 구조재료의 열적특성 그리고 구획실 형상치수 등을 조사하였다.

콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가 (Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete)

  • 연제영;서수연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권5호
    • /
    • pp.51-58
    • /
    • 2014
  • 본 연구에서는 철근콘크리트 구조의 FRP를 이용한 보강에서 낮은 내화성능을 개선하기 위한 방안을 찾기 위하여, 보강된 FRP의 외부를 내화보강하는 방법에 대한 내화실험을 실시하였다. 특히 철근콘크리트 부재의 피복에 홈을 형성하여 FRP를 매입하는 보강 즉, NSM 보강을 대상으로 하였다. 실험에서의 주요 변수는 보강방법과 사용 내화재료로서, Perlite계 재료를 표면에 분사하여 보강하는 방법, Calcium silicate계 보드로 표면에 부착하는 방법, 그리고 추가로 홈내부에 Polymer mortar 또는 Calcium silicate조각을 삽입하여 보강하는 방법으로 보강한 뒤 가열로 내부의 온도변화에 따른 열전달을 관찰하였다. 실험결과, Perlite계 내화뿜칠로 표면을 보강하는 경우보다 Calcium Silicate계 내화보드로 표면을 보강하는 방법이 효과적인 것으로 나타났다. 홈 내부의 에폭시가 유리전이온도에 도달할 때의 외부 표면온도 $820^{\circ}C$까지 내화단열성능을 확보할 수 있는 것으로 나타났다.

Fire Resistance Performance of FRP Rebar Reinforced Concrete Columns

  • Wang, Hui;Zha, Xiaoxiong;Ye, Jianqiao
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권2호
    • /
    • pp.111-117
    • /
    • 2009
  • Concrete columns reinforced with Fibre Reinforced Polymer (FRP) rebar have been increasingly used in civil engineering applications, while the research on fire resistance of such structural members is still very limited. In this paper, attempts are made to predict temperature distribution and mechanical performance of FRP rebar reinforced concrete columns in fire. The effect of concrete cover and section size on fire resistance time is studied by the finite element method. Based on a parametric study, a simple empirical formula to predict fire resistance time is proposed for possible adoption in fire resistance design.

전선피복용 컴파운드의 제조에서 난연제의 첨가량에 따른 물성 변화 연구 (Study on Property Modification with Fire Retardant Content in the Manufacture of Compounds for Cable Sheath)

  • 리시앙수;이상봉;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.47-51
    • /
    • 2019
  • The three different polymer compounds were manufactured with the three different fire retardant (silane coated magnesium dihydroxide) contents, 180, 200, 220 phr, for making cable sheath for ship industry. In the research, ethylene-vinylacetate, polyethylene as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, plasticizer, and other additives. In the evaluation. ΔT, Mooney viscosity, and tensile strength increased with the content of fire retardant. But it was found that too much fire retardant damaged aging resistance and cold resistance of the polymer compound.

유한요소법을 이용한 내화전선의 열해석에 관한 연구 (A Study on the Thermal Analysis of Fire-Resistance Cable using FEM)

  • 오홍석;이상호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).

Enhancing fire resistance of steel bridges through composite action

  • Kodur, Venkatesh K.R.;Gil, Augusto
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.353-362
    • /
    • 2022
  • Bridge fire hazard has become a growing concern over the last decade due to the rapid increase of ground transportation of hazardous materials and resulting fire incidents. The lack of fire safety provisions in steel bridges can be a significant issue owing steel thermal properties that lead to fast degradation of steel properties at elevated temperatures. Alternatively, the development of composite action between steel girders and concrete decks can increase the fire resistance of steel bridges and meet fire safety requirements in some applications. This paper reviews the fire problem in steel bridges and the fire behavior of composite steel-concrete bridge girders. A numerical model is developed to trace the fire response of a typical bridge girder and is validated using measurements from fire tests. The selected bridge girder is composed by a hot rolled steel section strengthened with bearing stiffeners at midspan and supports. A concrete slab sitting on the top of the girder is connected to the slab through shear studs to provide full composite action. The validated numerical model was used to investigate the fire resistance of real scale bridge girders and the effect of the composite action under different scenarios (standard and hydrocarbon fires). Results showed that composite action can significantly increase the fire resistance of steel bridge girders. Besides, fire severity played an important role in the fire behavior of composite girders and both factors should be taken into consideration in the design of steel bridges for fire safety.