• Title/Summary/Keyword: Materials characterization

Search Result 2,934, Processing Time 0.026 seconds

Examination of Antimicrobial Activity by Phaeobacter inhibens KJ-2 Isolated from a Marine Organism (해양 생물에서 분리된 Phaeobacter inhibens KJ-2의 항균 활성)

  • Kim, Yun-Beom;Kim, Dong-Hwi;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1161-1167
    • /
    • 2017
  • In order to find a new antimicrobial bacterium, we performed screening for antimicrobial activity of bacteria isolated from the eggs of a sea hare. The newly identified strain was designated as Phaeobacter inhibens KJ-2, based on the biochemical characterization and 16S rRNA gene sequence analysis. A colony of P. inhibens KJ-2 showed a circular and ruler-like smooth form at the edge, and a brown color. However, when maintained with a longer incubation time, its coloring was transformed into dark brown. From the result of SEM, P. inhibens KJ-2 is a bacillus which has a length of $0.8{\sim}1.0{\mu}m$ and a width of $0.4{\sim}0.6{\mu}m$. The optimal growth and antimicrobial activity were observed by shaking the culture for 24 hr at $20^{\circ}C$, which showed potent activity against pathogenic bacteria including Vibrio logei, Vibrio campbellii, Vibrio mimicus, Vibrio vulnificus, and Vibrio salmonicida. The antimicrobial activity was proportional to the amount of produced acylated homoserine lactones (AHLs). Therefore, we suggest that production of antimicrobial materials from P. inhibens KJ-2 is regulated by Quorum sensing (QS).

Preparation and Characterization of Double-Layered Coated Capsule Containing Low Molecular Marine Collagen and γ-Aminobutyric Acid Producing Lactobacillus brevis CFM20 (저분자 해양성 콜라겐과 γ-Aminobutyric Acid 생성 Lactobacillus brevis CFM20을 함유하는 이중코팅캡슐의 제조 및 특성)

  • Kim, Sun-Yeong;Oh, Do-Geon;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.857-867
    • /
    • 2017
  • This study was performed to encapsulate low molecular weight marine collagen and ${\gamma}$-aminobutyric acid (GABA)-producing lactic acid bacteria to inhibit degradation and improve survival rate during exposure to adverse conditions of the gastro-intestinal tract. Calcium-alginate method was used for the manufacture of a double-layered coated capsule. The inner core material was composed of collagen and lactic acid bacteria, and the coating materials were alginate and chitosan. The sizes and shapes of the double-coated capsule were affected mainly by centrifuge speed and pH. Manufactured capsules were observed with a scanning electron microscope and by confocal laser scanning microscopy to confirm the micromorphological changes of capsules and bacterial cells. As a result, double-layered coated capsules were not degraded at pH 1.2, whereas degradation occurred at pH 7.4. In addition, GABA and collagen were maintained in stable state at pH 1.2. Therefore, double-layered coated capsules developed in this study would not be degraded in the stomach and could be stably delivered to the small intestine to benefit intestinal and dermatic health.

The Characterization of Controlled Low Strength Material (CLSM) Using High CaO Fly Ash without Chemical Alkaline Activator (고칼슘 플라이애쉬를 이용한 알칼리 활성화제 무첨가 저강도 유동화 채움재 특성 평가)

  • Lim, Sanghyeong;Choo, Hyunwook;Lee, Woojin;Lee, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.17-26
    • /
    • 2016
  • The experimental investigation aims at developing controlled low strength materials (CLSM) using a self-cementitious fly ash (FA) as a binder and a bottom ash (BA) as a aggregate. The fly ash and bottom ash used in this study were obtained from a circulating fluidized bed combustion boiler (CFBC) which produces relatively high CaO containing fly ash. To find the optimum mixing condition satisfying flow consistency and unconfined compression strength (UCS), the CLSM specimens were prepared under various mixing conditions, including two types of aggregate and different weight fractions between fly ash and aggregate. Additionally, the prepared specimens were evaluated using a scanning electron microscope (SEM) and X-ray diffraction (XRD). The results of this study demonstrate that the water content satisfying flow consistency ranges from 42% to 85% and the flowability is improved with increasing the fraction of aggregate in whole mixture. The USC ranges from 0.3 MPa to 1.9 MPa. The results of UCS increases with increasing the fraction of aggregate in FA-sand mixtures, but decreases with increasing the fraction of aggregate in FA-BA mixtures. SEM images and XRD patterns reveal that the occurrence of both geopolymerization and hydration. The results of this study demonstrate that CFBC fly ash could be used as an alternative binder of CLSM mixtures.

Identification of Differentially Expressed Radiation-induced Genes in Cervix Carcinoma Cells Using Suppression Subtractive Hybridization (자궁경부암세포에서 방사선조사시 차등 발현되는 유전자 동정)

  • Kim Jun-Sang;Lee Young-Sook;Lee Jeung Hoon;Lee Woong-Hee;Seo Eun Young;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Purpose : A number of genes and their products are Induced early or late following exposure of cells to ionizing radiation. These radiation-Induced genes have various effects on irradiated cells and tissues. Suppression subtractive hybridization (SSH) based on PCR was used to Identify the differentially expressed genes by radiation in cervix carcinoma cells. Materials and Methods : Total RNA and poly $(A)^+$ mRNA were Isolated from Irradiated and non-irradiated HeLa cells. Forward- and reverse-subtracted cDNA libraries were constructed using SSH. Eighty-eight clones of each were used to randomly select differentially expressed genes using reverse Northern blotting (dot blot analysis). Northern blotting was used to verify the screened genes. Results : Of the 17t clones, 10 genes in the forward-subtracted library and 9 genes In the reverse-subtracted library were identified as differentially expressed radiation-induced genes by PCR-select differential screening. Three clones from the forward-subtracted library were confirmed by Northern blotting, and showed increased expression in a dose-dependent manner, including a telomerase catalytic subunit and sodium channel-like protein gene, and an ESTs (expressed sequence tags) gene. Conclusion : We Identified differentially expressed radiation-induced genes with low-abundance genes with SSH, but further characterization of theses genes are necessary to clarify the biological functions of them.

Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments (Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구)

  • Kim, Jung-Min;Hwang, Seung-Sik;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2011
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).

Synthesis and Characterization of Very High Molecular Weight Nylon 4 and Nylon 4/6 Copolymers (매우 높은 분자량을 갖는 Nylon 4 및 Nylon 4/6 공중합체의 합성 및 그 특성 분석)

  • Kim, Nam Cheol;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Yoo, Young-Tai;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • Potassium tert-butoxide (t-BuOK) with $CO_2$ or benzoyl chloride (BzC) as a polymerization initiator system was used with crown ether or TMAC as catalyst to synthesize very high molecular weight nylon 4 homo- and copolymers by anionic ring opening polymerization. Effect of different amounts of catalyst, crown ether and TMAC on the polymerization was studied in terms of intrinsic viscosity, yield and thermal properties. By adding crown ether or TMAC, polymers with very higher intrinsic viscosity values were obtained in a high yield. It was possible to synthesize nylon 4 homopolymer with such a high intrinsic viscosity value of 6.36 dL/g. Crown ether was found to be more efficient in terms of intrinsic viscosity and polymer yields than TMAC. Thermal analysis confirmed that molecular weight effect on the thermal properties of both nylon 4 and nylon 4 copolymer was marginal.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Purification of Two Novel Antimicrobial Peptides from Pyloric Caeca of the Starfish Asterina pectinifera (별불가사리 Asterina pectinifera의 유문맹낭 추출물로부터 새로운 2종류의 항균활성 펩타이드의 정제)

  • Go, Hye-Jin;Bae, Yun Jung;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.860-864
    • /
    • 2014
  • PAP-1, a novel antimicrobial peptide isolated from pyloric caeca extract of the starfish Asterina pectinifera was purified and characterized. First, the acidified pyloric caeca extract was put through Sep-Pak C18 solid phase extraction cartridge using a stepwise gradient. Among the eluents, RM 60 (retained materials at 60% methanol) showed good antimicrobial activity against Bacillus subtilis and Escherichia coli D31 and was purified in C18 reversed-phase and ion-exchange high-performance liquid chromatography columns. The purification steps yielded two novel peptides showing strong antimicrobial activities. These peptides were named pyloric caeca A. pectinifera peptide 1 and 2 (PAP-1 and PAP-2). For the characterization of the purified peptides, the molecular weights and amino acid sequences were determined by MALDI-TOF MS and Edman degradation. The molecular weights of PAP-1 and PAP-2 were about 2951.54 Da and 2980.15 Da respectively. The amino acid sequences of PAP-1 and PAP-2 were partially determined: AIQNAGES and AIQNAAES, respectively. PAP-2 is an isoform of PAP-1, differing merely by a single residue at position 6 (glycine or alanine). The comparison of the N-terminal amino acid sequences and molecular weights of the peptides with those of other known antimicrobial peptides revealed that PAP-1 and PAP-2 have no homology with any known peptides. These findings suggest that PAP-1 and PAP-2 play a significant role in the innate defense system of starfish pyloric caeca.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.

Characterization of Carbonized MDF by Scanning Electron Microscopy and X-ray diffraction (주사전자현미경 및 X선회절법에 의한 탄화 MDF의 특성)

  • Lee, Seon-Hwa;Park, Sang-Bum;Kwon, Sung-Min;Park, Jong-Young;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • As a fundamental study to develop absorbing materials on harmful volatile organic compounds (VOC) such as formaldehyde, structural and crystalline characteristics of MDF carbonized at different temperatures were examined by a scanning electron microscope and an X-ray diffraction method. Fibers in surface layer of MDFs showed more compressed morphology than those in middle layer of MDFs, but the porosity of MDFs increased with increasing the carbonized temperature. The wrinkle shape was frequently surfaces of cell walls was more severe than that at the lumina of cells. The shape of pits in the fibers of carbonized MDFs were hardly changed. The cell walls of MDFs carbonized at $400^{\circ}C$ and over showed an amorphous-like structure without cell layering. X-ray diffratograms from the MDFs carbonized at $400^{\circ}C$ showed a trace of crystalline cellulose. On the other hand, an amorphous diffraction pattern from carbons was obtained with the MDFs carbonized at $1,000^{\circ}C$.