• Title/Summary/Keyword: Material-handling

Search Result 521, Processing Time 0.029 seconds

Development of Simulator for Designing Unidirectional AGV Systems (일방향 AGV 시스템 설계를 위한 시뮬레이터 개발)

  • Lee, Gyeong-Jae;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.133-142
    • /
    • 2008
  • AGV systems are widely used to increase the flexibility and the efficiency of the material handling systems. AGV systems are one of critical factors which determine the overall performance of the manufacturing systems. To this end, the optimal design for AGV systems is essential. Commercial simulation software is often used as an analysis tool during the design of AGV systems, however a series of procedures are desirable to simplify the analysis processes. In this paper, we present and develop the architecture for unidirectional AGV systems simulator which is able to consider approximate optimal unidirectional flow path and various operational parameters. The designed AGV systems simulator is based on JAVA, and it is developed to support designing approximate optimal unidirectional network by using Tabu search method. In addition, it enables users to design and evaluate AGV systems and to analyze alternative solutions easily. Simulation engine is consists of layout designer, AGV operation plan designer, and integrated AGVS layout designer. Users enter their system design/operation information into input window, then the entered information is automatically utilized for modeling and simulating AGV systems in simulation engine. By this series of procedures, users can get the feed back quickly.

  • PDF

An Efficient Algorithm for Improving Detour in OLED FAB (효율적인 OLED FAB 경유 반송 개선 알고리즘)

  • Kim, Dong So;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.120-128
    • /
    • 2018
  • OLED Display fabrication system is one of the most complicated discrete processing systems in the world. As the glass size grows from $550{\times}650mm$ to $1,500{\times}1,850mm$ in recent years, the efficiency of Automated Material Handling System (AMHS) has become very important and OLED glass manufacturers are trying to improve the overall efficiency of AMHS. Aiming to meet the demand for high efficiency of transportation, various kind of approaches have been applied for improving dispatching rules and facility layout, while simultaneously considering the system parameters such as glass cassettes due date, waiting time, and stocker buffer status. However, these works did not suggest the operational policy and conditions of distribution systems, especially for handling unnecessary material flows such as detour. Based on this motivation, in this paper, we proposed an efficient algorithm for improving detour transportation in OLED FAB. Specifically, we considered an OLED FAB simplifying OLED production environment in a Korean company, where four stockers are constructed for the delivery of Lot in a bay and linked to processing equipments. We developed a simulation model using Automod and performed a numerical experiment using real operational data to test the performance of three operation policies under considerations. We showed that a competitive policy for assigning alternative stocker in case of detour was superior to the current dedicated policy using a specified stocker and other considered policies.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Improvement Approach on the Plant Layout Based on Tabu Search (Tabu 탐색 기법을 활용한 개선적 공장 설비배치)

  • Kim, Chae-Bogk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • This study develops an approach to assign numbers of facilities (rectangular shape) in a given plant and compares the test results by proposed approach with those by approaches in the literature. An improvement approach is proposed to minimize material handling cost given initial layout. Like popular heuristic approaches, the developed heuristic approach employs interchange routine to improve material handling cost in current layout. Horizontal interchange and vertical interchange procedures are applied to obtain better solution. Also, it is possible to rotate facility layout when the sizes of both facilities are same. However, the proposed approach generates good solutions without shape distortion. That means the shape of facilities remains rectangle in the final solution. In addition, the improve approach can find global optimal solution from local optimal solution by applying Tabu search technique. Based on 25 test problems in the literature, we obtained better solutions than other facility layout approaches in the literature when there are many facilities.

Musculoskeletal Disorders in Northeast Lobstermen

  • Fulmer, Scott;Buchholz, Bryan;Scribani, Melissa;Jenkins, Paul
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.282-289
    • /
    • 2017
  • Background: The objective of this study was to report on the prevalence of musculoskeletal pain in lobstermen in the northeast USA. Methods: Crews were randomly selected from those licensed to fish in Maine and Massachusetts and followed prospectively. The survey used a Nordic Musculoskeletal Questionnaire format to characterize musculoskeletal disorders. Results: A total of 395 individuals participated. One half of the respondents reported low back pain. Back pain was attributed to or exacerbated by lobstering. Low back pain was prevalent among both captains and sternmen, while sternmen reported more hand/wrist pain than captains. Multiple locations for pain were common in individual participants. Conclusion: Equipment or technology to assist material handling should be a priority, as the body segments with high prevalence of pain (back, hand/wrists, shoulders, knees) are all affected by the repetitive and forceful handling of the lobster traps.

A Study of Kinematic Selection and Design of Manipulator Aimed to Specified Task (작업지향형 매니퓰레이터 기구설계기법에 관한 연구)

  • Lee, Hee-Don;Yu, Seung-Nam;Ko, Kwang-Jin;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.939-944
    • /
    • 2007
  • Generally, development of a robot capable of fast movements or high payloads is progressed by the analysis of dynamic characteristics, DOF positioning, actuator selection, structure of links, and so on. This paper highlights the design of a robot manipulator handled by a human for man-machine cooperation. The requirements of the proposed system include its having multi-DOF(Degree of Freedom)and the capacity for a high payload in the condition of its maximum reach. The primary investigation factors are motion range, performance within the motion area, and reliabilityduring the handling of heavy materials. Traditionally, the mechanical design of robots has been viewed as a problem of packaging motors and electronics into a reasonable structure. This process usually transpires with heavy reliance of designerexperience. Not surprisingly, the traditional design process contains no formally defined rules for achieving desirable results, as there is little opportunity for quantitative feedback during the formative stages. This work primarily focuses on the selection of proper joint types and link lengths, considering a specific task type and motion requirements of the heavy material handling.

  • PDF

Bioconversion of flowers waste: Composting using dry leaves as bulking agent

  • Sharma, Dayanand;Yadav, Kunwar D.
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 2017
  • At present, in India, handling of solid waste has become a major challenge for the municipal authorities. Composting of solid waste, especially organic waste, can be one of the solutions to tackle the issue of handling solid waste. The present study is focused on agitated piles composting of flower waste (FW). Five combinations of FW with dry leaves (DL) and cow dung (CD) were prepared to conduct the study. Significant changes were observed due to the addition of bulking agent. The bulking material helps to reduce the production of leachate and also to maintain the aerobic condition within the piles. The reduction of total organic carbon was 21% in FW composting which increased by 36.48% during the composting of FW on addition of DL and CD. On the 120th day of composting, the pH of pile five (70 kg FW + 20 kg CD + 15 kg DL) was 7.33, electrical conductivity 2.77 mS/cm, total organic carbon 26.9%, total nitrogen 2.2%, and C:N ratio was 12. Appropriate proportion of waste mixture played an important role in providing favorable conditions for the microbial transformation of flower waste to stabilized compost. Finally, FW with the combination of CD and DL was found to be successful during pile composting.

Measurement and Prediction of the Combustible Properties of n-Butyl methacrylate(n-BMA) (n-Butyl methacrylate(n-BMA)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.42-47
    • /
    • 2016
  • The combustible properties(flash point, explosion limit and autoignition temperature) are the important safety items which are considered in the typical MSDS(material safety data sheet). In this study, for the safe handling of n-butyl methacrylate(n-BMA) being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of n-butyl methacrylate was experimented. And, the lower explosion limit of n-butyl methacrylate was calculated by using the lower flash point obtained in the experiment. The flash points of n-butyl methacrylate by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $51^{\circ}C$, respectively. The flash points of n-butyl methacrylate by using the Tag and Cleveland open cup testers are measured $53^{\circ}C$. The AIT of n-butyl methacrylate by ASTM 659E tester was measured as $295^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 0.85 vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

A Comparison of Thermal Performance of Double Low-E Glazing Window according to Various Material (더블로이유리 적용 창호의 구성요소에 따른 단열성능 비교 실험)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Jun-Sub;Lee, Sung-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.133-137
    • /
    • 2011
  • Low-e glazing is classified as soft low-e glazing and hard low-e glazing. Hard low-e glazing can be temperable and its handling is comfortable because its coating film is a oxide film generated at high temperatures. But there is a fatal weakness that its insulation performance and shielding performance are lower compared to soft low-e glazing by low electrical conductivity of coating film. Soft low-e glazing is excellent because its coating film consists of Ag that is excellent electrical conductivity and it has strength that can supply various product consumers want. But soft low-e glazing has weaknesses that temperable and handling are difficult because Ag is oxidized easily. Therefore this study analyzes thermal performance of glazing by changing filling gas according to applying low-e glazing through simulation to judge performance before making sample. After this process, a comparative experimental study was done through TVS by making temperable low-e glazing.

  • PDF

Flow Analysis for Fission Moly Target Cooling in HANARO (하나로 Fission Moly 표적 냉각에 대한 유동해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.502-507
    • /
    • 2003
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in-pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is used for fuel performance tests, radio isotope productions, reactor material performance tests, silicone semiconductor productions and etc. Specially, the HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading those at a flow tube (OR-5). The target should be sufficiently cooled in the flow tube without an interference with the cooling of the others and an induction of extremely vibration. This topic is described an analectic analysis for the cooling characteristics of the fission moly-99 target to find the minimum cooling water. It was confirmed through the analysis results that the minimum cooling water, about 2.717 kg/s flew through the flow tube under the worst case that the guide tube got no perforating holes for cooling water to pass through the holes and that the target was safely cooled under about seventy percent (70%) of the maximum allowable temperature of the target.

  • PDF