• Title/Summary/Keyword: Material test

Search Result 10,093, Processing Time 0.036 seconds

Study on the development of polycaprolacton silica nanohybrid for bone substitutes (폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구)

  • Jung, Keu-sik;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

The Study on the Engineering Characteristics by Self-Hardening of Coal Ash (석탄회의 자경성에 따른 공학적 특성연구)

  • Sang, Jung-Hyuk;Shin, Woong-Gi;Kim, Ji-Won;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.81-87
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

  • PDF

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Experimental Study on Structural Characteristics of Machine Bed Model Using Epoxy-Granite Material (에폭시 그래나이트재를 이용한 공작기계 베드 모델의 구조 특성에 관한 실험적 연구)

  • Maeng, H.Y.;Park, Y.I.;Won, S.T.;Kim, J.H.;Lee, H.S.;Park, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 1994
  • This study is to develop a new composite material, a mixture of epoxy resin and granite aggergates which is called Expoxy-Granite, to overcome the inherent disadvantages of conventional materials commonly used as a bed structure material of long-term dimensional/ thermal stability. Under the various manufacturing conditions which could be formulated through experimental investigation, we have constructed 6 kinds of Epoxy-Granite structure models having one fifth the size of the ultra-precision machine tool bed structure. They are compared with cast iron and pure granite models through the dynamic test and the thermal deformation test. Both in the steel ball dropping test and in the forced vibration test, three types of epoxy-granite models made in this study have shown much better dynamic characteristics than the cast iron model and almost the same characteristics as compared with the pure granite model. In the thermal deformation test the above composite materials have also represented lower thermal displacements in the vertical direction of each model as compared with other specimens. It is therefore seen that the epoxy-granite complsite material can be applied to the construction of high-precision machine tool bed, instead of cast iron or pure granite.

  • PDF

The Study on the Material Evaluation and Development of Nondestructive Inspection System Using Laser Guided Ultrasonics (레이저 유도 초음파를 이용한 재료평가 및 비파괴 검사 시스템 개발에 관한 연구)

  • 김재열;송경석;김창현;김유홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.263-268
    • /
    • 2004
  • In the present study, a Nd;YAG Laser (pulse type) was used to emit ultrasonic signals to a test material. In addition, a total ultrasonic investigation system was designed by adopting a Fabry-Perot interferometer, which receives ultrasonic signals without any contact. For non-destructive test SM45C, which contains some flaws was used as a test material. Because it is easy to align light beam in receiver, and the length of the light beam does not change much even if convex mirror leans towards one side, confocal Fabry-Perot interferometer, which has stable frequency, and PI control are used to correct interfered and unstable signals from temperature, fluctuation and time shift of laser frequency. Stable signals are always obtained by the feedback of PI circuit signals in the confocal Fabry-Perot interferometer. The type, size and position of flaws inside the test material were examined by achieving the stabilization of an interferometer. This study presented a useful method, which could quantitatively investigate the fault of objects by using a Fabry-Perot interferometer.

  • PDF

Multi-Stress Aging Test Technology for Suspension Polymer Insulator (폴리머 현수애자의 복합가속열화 평가기술)

  • Park, Hoy-Yul;Kang, Dong-Pil;Kim, Ik-Soo;Shin, Young-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.481-484
    • /
    • 2003
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators have significant advantages over porcelain and glass insulators. With the gradual improvement of their design and material, their reliability has also increased. It is however difficult to establish how they will perform after several years of service. Aging of the insulator weathershed may lead to damages such as excessive chalking and crazing, erosion and tracking which affect the insulator performance. In service insulator are subjected to aging stresses such as humidity, pollution and electrical field which act singly or in combination. There have been numerous accelerated laboratory tests developed with the intention of evaluating suitability of polymeric materials. Some of these are strictly material tests, where as, others evaluate full scale devices. Service experience plays a key role in the utility selection of polymer insulator, but is time consuming, and may not always be available. Hence there is a need for a meaningful and reliable accelerated aging test for polymer insulator. This paper describes multi-stress aging test for reliability of polymer insulator This paper presents the rule of multi-stress aging test and test chamber for polymer insulator in korea electrotechnology research institute.

  • PDF

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Thermal Response Property of Grout Materials from In-situ Test and Temperature Variation of Ground Heat Exchanger (그라우트 재료별 열응답 특성 및 열교환기 운전온도 변화)

  • Kim, Kap-Duk;Lee, Soung-Ju;Yun, Yeo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.769-775
    • /
    • 2008
  • The objective of this report is to determine the difference of thermal response that grouted two different materials, and compare the simulation result of the length of total ground heat exchanger length that using the ground thermal conductivity. And also to know heat exchange variation of ground heat exchanger temperature that measured with various test depth. The result shows that the test hole grouted with water permeable material got better thermal response than grouted with water impermeable material. However, with consideration of ingnore for the initial 12 hour data, the test hole grouted with impermeable material has larger thermal conductivity than the other. By former thermal conductivity, simulated data by engineering program shows only 3.4% difference or less. This result shows that ground thermal conductivity is not the main variables for the design program of ground heat exchanger. At the cooling or heating mode, base on the depth of -150m, the ground heat exchanger has best temperature at $-90{\sim}-60m$ and than getting worse because of entering water heat exchanged with leaving water in the same hole.

  • PDF

Fitness-for-Service Assessment for Instrument Valve Material by Tensile Test for Verification (계기용 밸브 재질의 검증 인장시험에 의한 사용적합성 평가)

  • In Hwan Shin;Chi Yong Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • In this paper, an application example for fitness-for-service of material is shown. A kind of instrument valve is made of austenitic stainless steel fabricated by the cold working process. The tensile strength of the cold worked austenitic stainless steel has to be limited under 90 ksi to prevent the stress corrosion cracking in power plants. In industrial fields, tensile strengths of some materials were discovered to be over the regulation requirements in a certified material test report (CMTR). Owner's verification tests were performed to compare with that in a CMTR and to check the appropriateness. It is found that, in the case of verification test under the required test speed, valve materials could be used in the field. Although it is only one application sample of material check process in the power generation site, this case study could show an importance of basic experimental technology in academia and research circles.