• Title/Summary/Keyword: Material of organic solar cell

Search Result 73, Processing Time 0.031 seconds

Synthsis of $CuInSe_2$ nanoparticles and its application to the absorber layer for thin films solar cells ($CuInSe_2$ 나노 입자 합성 및 이를 이용한 광흡수층 박막 제조)

  • Kim, Kyun-Hwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Jo, A-Ra;Kim, Do-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.396-396
    • /
    • 2009
  • Chalcopyrite semiconductor $CuInSe_2$ nanoparticles were prepared using a low temperature colloidal route by reacting the starting materials (CuI, $InI_3$ and $Na_2Se$) in solvents. After synthesised $CuInSe_2$ nanoparticles precursors were mixed with organic binder for the viscosity of the precursor slurry to be suitable for the doctor blade method. The mixture of $CuInSe_2$ and binder was deposited onto molybdenum-coated sodalime glass substrates to form thin film. The precursor thin films were preheated on the hot plate to remove remaining solvents and binder material. After subsequent thermal processing of the thin film under a selenium ambient, $CuInSe_2$ absorber layer with grain size significantly lager than that of the nanoparticles was formed.

  • PDF

Characteristics and study treand of organic semiconductor solar cell (유기반도체 태양전지의 특성과 연구동향)

  • 이경섭;박계춘
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.204-207
    • /
    • 1996
  • 태양의 광에너지를 전기에너지로 변환하는 태양전지의 재료는 현재 무기반도체가 주를 이루고 있지만 최근 유기반도체가 재료자체 물성의 연구진전과 더불어 태양전지로서 개발가능성이 논하여 지고 있다. 한편 유기반도체의 장점은 1)박막으로 제작이 용이하고 2)대량생산에 의한 저가제조가 가능하며 3)경량화를 할 수 있고 4)그 기능의 다양성을 줄 수 있다는 것이다. 또한 단점은 캐리어 트랩 밀도가 커서 반송자(carrier)의 수명과 이동도가 작고 확산길이도 짧기 때문에 광수집 효율이 매우 낮아 광전변환효율이 낮다는 것이다. 또한 일반적으로 유기반도체는 저항율이 커서 오옴성 접촉이 어렵고 입사광 강도의 증대에 따라 변환효율이 감소하는것도 큰 문제로 되어있다. 따라서 본고에서는 지금까지 유기반도체를 사용한 태양전지의 원리 및 제조기술을 간단히 살펴보고 특성과 연구동향등을 분석하여 앞으로 유기반도체 태양전지의 나아가야할 방향을 찾아보고자 한다.

  • PDF

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Optimization of $Alq_3$-coated FTO substrate for high efficient of DSSC (염료감응형 태양전지의 고효율화를 위한 $Alq_3$가 코팅된 FTO기판 제작)

  • Park, A-Reum;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.241-241
    • /
    • 2010
  • Recently high and persistent spontaneous buildup of a surface potential (SP) upon vacuum deposition of tris (8-hydroxyquinolinato) aluminum (III) ($Alq_3$), which is widely used for organic light emitting devices. The removal of the giant surface potential by visible light irradiation has also been reported. In this study, we coated $Alq_3$ on the FTO substrate and raise the capacity for absorbing sun light. The $Alq_3$ which is green light emitting diode emits light at wavelengths between 500 and 550nm. If we apply one's FTO/$Alq_3$ substrate in one's DSSC, we could get higher energy conversion efficiency because the N719 dye that we used for fabricating the DSSC emits light just at near 540nm. The energy conversion efficiency of approximately 4.8 % at the condition of irradiation of AM 1.5 (100 mW/$cm^2$) simulated sunlight, and the $J_{sc}$ is 12.0 mA/$cm^2$, $V_{oc}$ is 0.71 V, FF is 0.56, respectively.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Thickness Dependence of Electrical and Optical Properties of ITZO (In-Sn-Zn-O) Thin Films (ITZO (In-Sn-Zn-O) 박막의 전기적 및 광학적 특성의 두께 의존성)

  • Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1285-1290
    • /
    • 2017
  • We prepared ITZO thin films with various thicknesses on glass substrates using RF magnetron sputtering and investigated electrical, optical and structural properties of the thin film. Sheet resistance of ITZO thin film showed a decreasing trend on the increase of film thickness, but its resistivity exhibited a substantially constant value of $5.06{\pm}1.23{\times}10^{-4}{\Omega}-cm$. Transmittance of ITZO thin film moved to the long-wavelength with the increase of film thickness. Figure of merit in a visible light and an absorption area of P3HT:PCBM organic active layer of the 360nm-thick IZTO thin film was $8.21{\times}10^{-3}{\Omega}^{-1}$ and $9.29{\times}10^{-3}{\Omega}^{-1}$, respectively. Through XRD and AFM measurements, it was confirmed that all the ITZO thin films have amorphous structure and the surface roughness of films are very smooth in the range of 0.561 to 0.263 nm. In this study, it was found that amorphous ITZO thin film is a very promising material for organic solar cell.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Development of Process and Equipment for Roll-to-Roll convergence printing technology

  • Kim, Dong-Su;Bae, Seong-U;Kim, Chung-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.1-19.1
    • /
    • 2010
  • The process of manufacturing printed electronics using printing technology is attracting attention because its process cost is lower than that of the conventional semiconductor process. This technology, which offers both a lower cost and higher productivity, can be applied in the production of organic TFT (thin film transistor), solar cell, RFID(radio frequency identification) tag, printed battery, E-paper, touch screen panel, black matrix for LCD(liquid crystal display), flexible display, and so forth. In general, in order to implement printed electronics, narrow width and gap printing, registration of multi-layer printing by several printing units, and printing accuracy of under $20\;{\mu}m$ are all required. These electronic products require high precision to the degree of tens of microns - in a large area with flexible material, and mass productivity at low cost. As such, the roll-to-roll printing process is attracting attention as a mass production system for these printed electronic devices. For the commercialization of this process, two basic electronic ink technologies, such as conductive ink and polymers, and printing equipment have to be developed. Therefore, this paper addressed basis design and test to develop fine patterning equipment employing the roll-to-roll printing equipment and electronic ink.

  • PDF

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF