• Title/Summary/Keyword: Material extrusion

Search Result 374, Processing Time 0.026 seconds

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies (ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

Mechanical Properties of Rapidly Solidified Al-Ni-Mm Alloy Powders Consolidated by Extrusion (급속응고 Al-Ni-Mm 합금분말 압출재의 기계적 성질)

  • 김형섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.100-103
    • /
    • 1998
  • In this study, Al-Ni-Mm alloy has been produced by a gas atomization technique and consolidated by a powder extrusion method. The powders showed mixed structures of amorphous, fcc-Al phases and intermetallics. Each phase shows different size and quantity with different size of the powders due to the higher cooling rate of the finer powders. Because of the difference of the microstructure, the powders with the different size show differences of the mechanical properites of the powders and extrudates.

  • PDF

A Three-Dimensional Finite Element Analysis of Hot Square Die Extrusion Considering the Effect of Die Bearing (금형 베어링 효과를 고려한 평금형 열간 압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.185-191
    • /
    • 1996
  • The Variation of die bearing is primary way to control the metal flow in hot square die extrusion process. Finite element computations are carried out to assess the influence of die bearing on metal flow and state variables. The finit element method is developed based on ALE description for a rigid-viscoplastic material. Since thermal state computational example, hot square die extrusion with varied die bearing lengths has been analyzed for the profile of a L-section.

  • PDF

Process Design of Titanium Alloy Backward Extrusion (티타늄 합금의 후방압출 공정 설계)

  • 홍성석;김진영;김홍규;박태원;백두현;심인옥;김성식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.68-80
    • /
    • 2003
  • The backward extrusion process of titanium alloy with large length to diameter ratio was simulated for different punch and die shape. The process variables such as initial billet shape, interface friction, contacting time and punch velocity were investigated and compared with experimental results. To make more effectively titanium alloy cup shape forging products with vertical wall, a modified die design which can reduce forging load, prevent sticking with punch and minimize material loss was suggested.

Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 유한 요소 해석)

  • 신현우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.27-46
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition, is combined with the slab method. To define the die geometry for non-axisymmetric extrusion, area mapping technique was used. Streamlined die surface was used to miniminze the total extrusion pressure. Extrusion of square, hexagonal and "T" section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

A Theoretical and Experimental Study on the Plastic Flow in Porthole Extrusion (포트홀 압출의 소성유동에 대한 이론 및 실험적 연구)

  • 한철호;임헌조
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.485-492
    • /
    • 2001
  • The paper is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die. The extrusion process is analyzed by numerical simulation and experiments in the unsteady state. The effects of types of inlet with and without taper on the flow and extrusion load are mainly discussed and compared by FEA and experiments. Experiments are carried out by using the plasticine as a model material at room temperature. To visualize the plastic flow in the extrusion process, some split dies and punches are designed and manufactured by EDM. The theoretical predictions by FEM are reasonable agreements with experimental results on the deformed configurations and welding lines.

  • PDF

A Study of the Upper Bound Analysis of Extrusion Process with Torsion (토션을 이용한 압출공정의 상계해석에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.578-584
    • /
    • 2008
  • In this study, a extrusion process with torsion of the bottom die is investigated to improve the forming performance of conventional extrusion process. In the experiment, plasticine is used as a model material. The results of experiments are compared with the two numerical methods, the Experiment and the Finite Element Method(FEM). An attempt is made to link programs incorporating with the process variables obtained by commercial FEM software, DEFORM-3D a useful package. Numerical result is compared with experimental one. These results show that the torsional extrusion process is very useful process because this process can obtain the homogenous deformations.

An Experimental Study in the Forward-Backward Extrusion for the Cup-Cup shape (상하 컵형인 전후방압출공정에 관한 실험적 연구)

  • 김영득;한철호
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • In the simultaneous forward-backward extrusion the effects of some process variables including area reduction, stroke advance, materials(Al 2024 and commercial pure copper) on the extrusion load, plastic flow and height ratio of upper to lower extruded parts are experimentally investigated and analyzed. Grid-marking technique is employed to visualize the plastic flow. The influence of using split and original specimen on the extrusion load and height ratio is evaluated by experiments. Experimental results show that the plastic flow if oriented to the part of lower area reduction in the begining but it is usually variated during the overall process. The configurations of plastic deformation and plastic flow are dependent on the working materials and the lubricational conditions.

  • PDF

Effects of Extrusion Variable on Functional and Nutritional Properties of Extruded Oat Products

  • Gutkoski, Luiz Carlos;El-Dash, Ahmed Atia
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.159-162
    • /
    • 1999
  • The purpose of this research was to study the effects of initial moisture levels and extrusion temperatures on dietary fiber, nitrogen solubility index, available lysine, and the in vitro protein digestibility of extruded oat productes. The dehulled grains were ground in a Brabender quadrumat Senior mill and the coarse fraction, with higher crude protein, lipids and dietary fiber were conditioned on various mositre levels (15.5~25.5%) and extruded in a Brabender single-screw laboratory extruder. The extrudates showed a higher amount of soluble dietary fiber (8.14%) than in the raw material . However, the extrusion process affected the nutritional value of the protein due to a decrease in available lysine with increased temperature . The in vitro protein digestibility was unaffected by initial moisture levels and the extrusion temperatures examined.

  • PDF