• Title/Summary/Keyword: Material degradation

Search Result 1,601, Processing Time 0.029 seconds

Observation of Electrical Properties in Field-aged Photovoltaic Module (Field aged 태양전지모듈의 노화현상에 따른 전기적 특성 관찰)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 6 years shows around 16% drop of electrical properties due to the interconnect degradation and PV module passed 18 years has been found to drop of around 20% mainly by the encapsulant discoloration. Furthermore the difference between low and high temperature of PV array at hot spot goes up to $30^{\circ}C$ and it leads to interconnect degradation. On the other hands, the temperature difference was observed to be around $15^{\circ}C$ at the encapsulant discoloration spot of PV array.

  • PDF

$I_c$ Degradation Behavior in YBCO Coated Conductors under Torsional Strain (YBCO 박막도체의 비틀림 변형률에 따른 임계전류 열화거동)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Kim, Tae-Young;Ko, Rock-Kil;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.93-94
    • /
    • 2006
  • The $I_c$ degradation behavior of YBCO CC tapes due to torsional deformation has been investigated. Particularly, the influence of torsion angle on the $I_c$ in HTS tapes was examined at 77K (self-field). At low torsional angles or shear strains, the $I_c$ degradation was small and gradual. Also, a good consistency of the $I_c$ degradation behaviors was found along the longitudinal direction under torsion when multiple voltage terminals were adopted for investigating the homogeneity of the $I_c$ degradation.

  • PDF

A Study on the Degradation of Mechanical Properties in High Nitrogen Steel Following Heat Treatments and Welding (고질소계 강의 열처리재 및 용접부의 기계적성질 저하에 관한 연구)

  • 권일현;윤재영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.121-128
    • /
    • 1998
  • The degradation of mechanical properties in the high nitrogen steel HN3 developed for nuclear fusion reactor has been evaluated quantitatively using the small punch(SP) test, X-ray diffraction (XRD) analysis has also been conducted to identify carbides or nitrides precipitated on grain boundaries of the heat treated samples. Mechanical properties of the steel HN3 significantly decreased with increasing heat treatment time and temperature or with decreasing testing temperature. Combination of XRD and metallurgical observation, revealed that the material degradation in the thermally aged steel was caused by precipitation of carbides on the grain boundaries. While the weld metal showed the lowest mechanical properties among various microstructures in GTA weldments. By combining SP test and XRD analysis, cryogenic fracture behaviors and aging degradation for high nitrogen steel could be successfully evaluated in nondestructive manner.

  • PDF

Storage Life Estimation of Magnesium Flare Material for 81 mm Illuminating Projectile (81 mm 조명탄용 마그네슘계 조명제 저장수명 예측)

  • Back, Seungjun;Son, Youngkap;Lim, Sunghwan;Myung, Inho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • It is necessary to both analyze root-cause of non-conformance of effective illumination time to the specification, and estimate the storage lifetime for 81 mm illuminating projectile stockpiled over 10 years. In this paper, aging mechanism of magnesium flare material due to long-term storage was supposed, and two-stage tests, pre-test and main test based on accelerated degradation tests were performed. Field storage environment of moistureproof was set up, and illumination times in the accelerated degradation tests for temperatures 60 and $70^{\circ}C$ were measured. Then, storage reliability of the projectile was estimated through analyzing the measured data and applying distribution-based degradation models to the data. The $B_{10}$ life by which 10 % of a population of the projectiles will have failed at storage temperature of $25^{\circ}C$ was estimated about 7 years.

Evaluation of 1Cr-1Mo-0.25V Steel Degradation Using Magnetic Barkhausen Noise (Barkhausen noise를 이용한 1Cr-1Mo-0.25V강의 열화도 평가)

  • Lee, Jong-Min;Ahn, Bong-Young;Nahm, Seung-Hoon;Lee, Seung-Seok;Lee, Ouk-Sub;Nam, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1262-1269
    • /
    • 2002
  • It is inevitable to evaluate the life of turbine rotor because the operating periods of power plants need to be extended. For the test, seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. Magnetic methods utilizing Barkhausen noise coercive force($BN_c$) were applied to detect the degradation caused by thermal aging. Magnetic property of material is related with domain dynamics and that is affected by the microstructure of material. Therefore $BN_c$ is very sensitive to the microstructure change of the material. With the increase of degradation, $BN_c$ was decreased and this phenomenon is considered due to precipitations and grain size. The result was compared with Vickers hardness($H_v$) and coercive force($H_c$) to detect the relative variation, and was related with $H_v$ and YS to estimate the change of the mechanical properties with the degradation.

A Study on the Evaluation of Material Degradation of 1Cr-lMo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-lMo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this studdy the four classes of the thermally aged 1Cr-lMo-0.25V specimens were prepared using an artificially accelerated aging method at 630$\^{C}$. Ultrasonic tests, tensile tests, K$\_$IC/ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter derived from the harmonic generation level is sensitive and will be a good parameter to evaluate the material degradation.

Study of Light-induced Effect on Silicon Solar Cell from Wafer to Cell: A Review (광조사에 의한 실리콘 태양전지 열화 연구)

  • MyeongSeob Sim;Dongjin Choi;Myeongji Woo;Ji Woo Sohn;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.6-16
    • /
    • 2024
  • The efficiency of silicon solar cells is approaching a theoretical limit referred to as 'the state of the art'. Consequently, maintaining efficiency is more productive than pursuing improvements the last room for limiting efficiency. One of the primary considerations in silicon module conservation is the occurrence of failures and degradation. Degradation can be mitigated during the cell manufacturing stage, unlike physical and spontaneous failure. It is mostly because the chemical reaction is triggered by the carrier generation of thermal and light injection, an inherent aspect of the solar cell environment. Therefore, numerous researchers and cell manufacturers are engaged in implementing mitigation strategies based on the physical degradation mechanism.

Degradation of the Herbicide Butachlor by Laboratory-synthesized Nanoscale $Fe^0$ in Batch Experiments

  • Kim, Hyang-Yeon;Kim, In-Kyung;Han, Tae-Ho;Shim, Jae-Han;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.101-105
    • /
    • 2006
  • Degradation of the herbicide butachlor was investigated using laboratory-synthesized zerovalent iron ($Fe^0$). The synthesized zerovalent iron was determined to be nanoscale powder by scanning electron microscopic analysis. To investigate degradation of butachlor using the synthesized nanoscale zerovalent iron, time-course batch experiments were conducted by treating the solution of butachlor formulation with the iron. More than 90% degradation of butachlor was observed by iron treatment within 24 h. The synthesized nanoscale zerovalent iron showed an increase in particle aggregation in the batch tests. Green rust formation and a pH drop in solutions were observed, suggesting that the oxidation of the iron occurred. When the iron was extracted with dichloromethane, a negligible concentration was found in the extract, suggesting that butachlor did not bind to the iron particles. GC/MS analysis detected the dechlorinated product as a major degradation product of butachlor in the solutions. The data indicate that laboratory-synthesized zerovalent iron functioned as a reductant to remove electron-withdrawing chlorine, giving the dechlorinated product.

A Study on Stress Corrosion Cracking Evaluation with Material Degradation of High Temperature Components (고온부재의 재질열화에 따른 응력부식균열 평가에 관한 연구)

  • Park, Jong-Jin;Yu, Ho-Seon;Jeong, Se-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1123-1132
    • /
    • 1996
  • It has been reported that high temperature structural components represent the phenomenon of material degradation according to a long term service under high temperature and pressure. Especially, fossile power plant components using the fossil fuel and heavy oil are affected by dewpoint corrosion of $H_2SO_4$produced during a combustion. Therefore, the service materials subjected to high temperature and pressure may occur the stress corrosion cracking. The object of this paper is to investigate SCC susceptibility according to the material degradation of the high temperature structural materials in dewpoint corrosive environment-$H_2SO_4$.The obtained results are summarized as follows : 1) In case of secondary superheater tube, the fractograph of dimple is observed at the concentration of $H_2SO_4$-5%. When the concentration of $H_2SO_4$ is above 10%, the fracture mode is shifted from a transgranular fracture to an quasi-intergranular fracture according to the increment of concentration. 2) In the relationship between [$\Delta$DBTT]$_sp$ and SCC susceptibility, it is confirmed that the greater material degradation degree is, the higher SCC susceptibility is. In addition, it can be known that SP test is useful test method to evaluate SCC susceptibility for high temperature structural components. 3) When [$\Delta$DBTT]$_sp$ is above 17$17^{\circ}C$ the SCC fracture behavior is definitely observed with SCC susceptibility of above 0.4.

Partial Discharge Diagnosis of Thermal Degradated PVC Cable (열열화된 PVC 케이블의 부분방전 진단)

  • Song, Ki-Tae;Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.208-214
    • /
    • 2011
  • In this thesis, the partial discharge according to applied voltage and variations of cross-sectional area and length of the conductor related to general condition for using cable was measured in order to study degradation diagnosis for 2-Core cable of the PVC insulator used in industrial fields for other safety installations. Also the thermal degradation conditions under various installation circumstances of cables were studied by assuming degradation conditions with each different degradation rate (50%, 67%, 100%) such as variation in degradated temperature, thermal exposure time, normal state, partially degradated state and overall degradated state for thermal degradation diagnosis. The quantity of electric discharge (V-Q) according to applied voltage was measured for measurement of inception voltage and extinction voltage. The quantity of electric discharge and the number of electric discharge (Q-N) were measured with applied voltage kept constantly. In addition, pictures were taken using SEM (scanning electron microscope) to compare the surface of external insulator to degradated state of internal insulator according to thermal degradation temperature and also compare the surface of external insulator to degradated surface state of internal insulator according exposure time of cables to thermal stress.