Browse > Article

Degradation of the Herbicide Butachlor by Laboratory-synthesized Nanoscale $Fe^0$ in Batch Experiments  

Kim, Hyang-Yeon (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
Kim, In-Kyung (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
Han, Tae-Ho (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
Shim, Jae-Han (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
Kim, In-Seon (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Journal of Applied Biological Chemistry / v.49, no.3, 2006 , pp. 101-105 More about this Journal
Abstract
Degradation of the herbicide butachlor was investigated using laboratory-synthesized zerovalent iron ($Fe^0$). The synthesized zerovalent iron was determined to be nanoscale powder by scanning electron microscopic analysis. To investigate degradation of butachlor using the synthesized nanoscale zerovalent iron, time-course batch experiments were conducted by treating the solution of butachlor formulation with the iron. More than 90% degradation of butachlor was observed by iron treatment within 24 h. The synthesized nanoscale zerovalent iron showed an increase in particle aggregation in the batch tests. Green rust formation and a pH drop in solutions were observed, suggesting that the oxidation of the iron occurred. When the iron was extracted with dichloromethane, a negligible concentration was found in the extract, suggesting that butachlor did not bind to the iron particles. GC/MS analysis detected the dechlorinated product as a major degradation product of butachlor in the solutions. The data indicate that laboratory-synthesized zerovalent iron functioned as a reductant to remove electron-withdrawing chlorine, giving the dechlorinated product.
Keywords
zerovalent iron; butachlor; pesticide; herbicide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gibb, C., Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2004) Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 54, 841-848   DOI   ScienceOn
2 Ghauch, A. (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43, 1109-1117   DOI   ScienceOn
3 Kanel, S. R., Manning, B., Charlet, L. and Choi, H. (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Techno. 39, 1291-1298   DOI   ScienceOn
4 Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E. and Bhattacharyya, D. (1999) Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 15, 8412-8420   DOI   ScienceOn
5 Comfort, S. D., Shea, P. J, Machacek, T. A, Gaber, H. and Oh, B.-T. (2001) Field-scale remediation of a metolachlorcontaminated spill site using zerivalent iron. J. Environ. Qual. 30, 1636-1643   DOI
6 Ferrer, I., Thurman, E. M. and Barcelo, D. (1997) Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray. Anal. Chem. 69, 4547-4553   DOI   ScienceOn
7 Wang, T. C., Lee, T. C., Lin, M. F. and Lin, S. Y. (1987) Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells. Mutat. Res. 188, 311-321   DOI
8 Singh, K. P., Maik, A., Mohan, D. and Takroo, R. (2005) Distribution of persistent organochlorine pesticide residues in Gomti River, India. Bull Environ. Contam. Toxicol. 74, 146-154   DOI
9 Pal, O. R. and Vanjara, A. K. (2001) Removal of malathion and butachlor from aqueous solution by clays and orgonoclays. Sepa. Purif. Technol. 24, 167-172   DOI   ScienceOn
10 Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J. Environ. Qual. 27, 1240-1245
11 Pearn, J. H. (1985) Herbicides and congenital malformations: a review for the paediatrician. Aust. Pediatr. J. 21, 237-242
12 Glaves, G. N, Klabunde, K. J., Sorensen, C. M. and Hadjipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and $Fe_{2}B$ powders. Inorg. Chem. 34, 28-35   DOI   ScienceOn
13 Oh, B. -T. and Alvarez, P. J. (2004) Removal of explosive using an integrated iron-microbial treatment in flow-through columns. Bull. Environ. Contam. Toxicol. 73, 1-8
14 Jha, A. M., Rab, S. F. and Singh, A. C. (1996) Cytotoxic activities of three herbicides in root tip cells of Vivia faba L. Envrion. Biol. 17, 211-216
15 Hill, A. B., Jefferies, P. R., Quistad, G. B. and Casida, J. E. (1997) Dialkylquinoneimine metabolites of chlroroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes. Mutat. Res. 395, 159-171   DOI
16 Vargo, J. D. (1998) Determination of sulfonic acid degradates of chloroacetanilide and chloroacetanilide herbicides in groundwater by LC/MS/MS. Anal Chem. 70, 2699-2703   DOI   ScienceOn
17 Hernandez, R., Zappi, M. and Kuo, C.-H. (2004) Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environ. Sci. Technol. 38, 5157-5163   DOI   ScienceOn
18 Ateeq, B., Abul farah, M., Ali, M. N. and Ahmad, W. (2002) Induction of micronuclei and erythrocute alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat. Res. 518, 135- 144   DOI   ScienceOn
19 Wang, C.-B. and Zhang, W.-X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154-2156   DOI   ScienceOn
20 Kanel, S. R., Greneche, J. -P. and Choi, H. (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045-2050   DOI   ScienceOn
21 Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K. and Mallouk, T. (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 13, 479-486   DOI   ScienceOn
22 Tanabe, A., Mitobe, H., Kawata, K. and Sakai, M. (1996) Monitoring of herbicides in river water by gas chromatography- mass spectrometry and solid-phase extraction. J. Chromatogr. A 754, 159-168   DOI   ScienceOn
23 Nakano, Y., Miyazaki, A., Yoshida, T., Ono, K. and Inoue, Y. (2004) A study on pesticide runoff from paddy fields to a river in rural region. 1: field survey of pesticide runoff in the Kozakura River, Japan. Water Res. 38, 3017-3022   DOI   ScienceOn
24 Hard, G. C., Iatropoulos, M. J., Thake, D. C., Wheeler, D., Tatematsu, M., Hagiwara, A., Williams, G. M. and Wilson, A. G. E. (1995) Identity and pathogenesis of stomach tumors in Spraque-Dawley rats associated with the dietary administration of butachlor. Exp. Toxicol. Pathol. 47, 95- 105   DOI   ScienceOn
25 Oh, B.-T. and Alvarez, P. J. (2002) Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) degradation in biologically-active iron columns. Water Air Soil Pollut. 141, 325-335   DOI
26 Tanabe, A., Mitobe, H., Kawata, K., Yasuhara, A. and Shibamoto, T. (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano river in Japan. J. Agric. Food Chem. 49, 3847-3852   DOI   ScienceOn
27 Shea, P. J., Machacek, T. A. and Comfort, S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ. Pollut. 132, 183-188   DOI   ScienceOn
28 Oh, B.-T., Just, C. L. and Alvarez, P. J. (2002) Hexahydro- 1,3,5-trinitro-1,3,5- triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ. Sci. Technol. 35, 4341-4346   DOI   ScienceOn
29 Gaber, H. M., Comfort, S. D., Shea, P. J. and Machacek, T. A. (2002) Metolachlor dechlorination by zerovalent iron during unsaturated transport. J. Environ. Qual. 31, 962-969   DOI
30 Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2003) Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Eviron. Qual. 32, 1726-1734   DOI
31 Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D. and Powers, W. L. (1997) Removal of TNT and RDX from water and soil using iron metal. Environ. Pollut. 97, 55-64   DOI   ScienceOn
32 Ghauch, A., Gallet, C., Charef, A., Rima, J. and Martin- Bouyer, M. (2001) Reductive degradation of carbaryl in water by zero-valent iron. Chemosphere 42, 419-424   DOI   ScienceOn
33 Xu, D., Xu, Z., Zhu, S., Cao, Y., Wang, Y., Du, X., Gu, Q. and Li, F. (2005) Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples. J. Colloid. Interf. Sci. 285, 27-32   DOI   ScienceOn