• 제목/요약/키워드: Material damping ratio

검색결과 126건 처리시간 0.026초

압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어 (Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material)

  • 강영규;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계 (Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics)

  • 김주호;장승환
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

Rubber-Filled 샌드위치 복합재료의 진동 특성 평가 (Dynamic Performance of Rubber-Filled Sandwich Composite)

  • 황호;조치룡;김동욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.238-243
    • /
    • 2004
  • A new sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved damping performance. The viscoelastic fillings in the honeycomb cells was hoped to act as dampers and provide the function of energy dissipation in this combined material system. Dynamic test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s}$, $[0/45/-45/90]_{2s}$, $[45/-45]_{4s}$. Frequency response, displacement response and damping ratio were checked and compared for the both groups of specimens, with and without rubber fillings. The experimental results provided a good agreement with our material design concept.

  • PDF

수동 구속감쇠층을 갖는 복합적층보의 진동특성 (Vibration Characteristics of Laminated Composite Beams with Passive Constrained Layer Damping)

  • 강영규
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.964-969
    • /
    • 2002
  • The flexural vibration of laminated composite beams with passive constrained layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of Iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations.

구조용 사각 보의 감쇠측정 (Damping Measurements of Structural Rectangular Beam)

  • 류봉조;송선호;윤충섭;안병욱;이영엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF

공진주 시험을 이용한 섬유보강토의 동적변형특성 (Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests)

  • 장병욱;허준;박영곤;차경섭;우철웅
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

초정밀 가공기계 베드 구조물용 에폭시-그래나이트재의 특성에 관한 연구 (Characteristics of Epoxy-Granite Composite Material For Ultra-Precision Machine Bed Structures)

  • 김종호;원시태;맹희영;박영일
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.74-84
    • /
    • 1990
  • The machine tool structures for ultra-precision machining muxt be manufactured with materials which have high static and dynamic stiffness, high damping, a long term dimensional and thermal stability. This study aims at the development of new composite material Epoxy-Granite which exhibits the satisfactory characteristics as a material of ultra-precision mchine tool bed. The Epoxy-Granite testpieces that use epoxy resins as a binder and granite particles as a aggregate have been manufactured so as to examine the material properties about mechanical, thermal and damping characteristics. Experiments were carried out to obtain the proper manufacturing conditions of Expoxy-Granite specimens by varying the several testing conditions such as types of epoxy resins, particle sizes of granite and mixture ratio of epoxy resin and aggregate. Also, when Epoxy-Granite was compared with cast iron, GRANITAN which was imported from CMS of U.K. and granite materials, it has exhibited the superior or almost the same mechanical and damping properties and thermal conductivity, except for the thermal expansion.

  • PDF

분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향 (Effects of Distributed Load on the Dynamic Response of the Reinforced Concrete Slabs)

  • 오경윤;조진구;최수명;홍종현
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.19-26
    • /
    • 2008
  • This study has been carried out to investigate the dynamic characteristics of RC slabs. For this purpose, the 20-node solid element has been used to discretize the RC slabs into two parts of concrete and rebar. The material non-linearity considering elasto-visco plastic model and the smeared crack model have been adopted in the finite element formulation. The applied load can handle step load, load intensity of harmonic load, area of distributed load and frequency. The frequency of harmonic load has an significant effect on dynamic behaviour in terms of displacement. As the frequency is increased, the effect of load amplitude is more serious. Especially, if the frequency of harmonic load exceeds 30 Hz, it is noted that the displacement by harmonic load is greater than that by step load. In case of harmonic load, the damping effect shows no certain tendency with respect to frequency of load. In details, the damping is effective when the frequency of harmonic load is 2 Hz, but there is no consistent tendency according to damping ratio. The dynamic response when the frequency of harmonic load is 3 Hz shows same result for undamped case as well as for damped case with 5% damping ratio. It is also noted that we can get the largest deflection for damped case with 1% damping ratio. However, there is not any damping effect when the frequency of harmonic load is greater than 4 Hz.

전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구 (Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles)

  • 조승현;윤범용;이상현;홍경민;이상현;서종환
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.192-198
    • /
    • 2021
  • 전기차의 수요 및 보급이 확대됨에 따라 차량 내 이음(buzz, squeak, rattle, BSR) 개선에 대한 요구가 커지고 있다. 이에 풍절음, 도어 글라스 및 차량 진동을 차단하는 인너벨트 웨더스트립(innerbelt weatherstrip)의 댐핑(damping) 특성 향상을 통해 BSR을 저감하는 기술 개발이 필수적이다. 기존 열경화성(thermoset) 탄성체 대비 가볍고 재활용이 가능한 열가소성(thermoplastic) 탄성체가 주목을 받고 있지만 낮은 소재 댐핑과 영구압축줄음률(compression set)로 인해 도어 글라스와 웨더스트립 간 마찰 소음을 발생하는 문제가 있다. 고분자 댐핑 특성은 점탄성(viscoelastic)에 좌우되므로, 본 연구에서는 인너벨트 웨더스트립과 도어 글라스 간 마찰 소음을 개선하기 위해 EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV)의 재료설계인자(EPDM/PP 비율, EPDM 내 ENB 함량)에 따른 점탄성 분석을 통해 소재 댐핑 특성을 평가하였다. EPDM/PP 비율에 따른 분석을 통해 PP 비율이 낮을수록 소재가 연화되고, 탄성회복력(resilience)이 증가하여 저장탄성률(storage modulus)은 10.8% 감소하고 댐핑 특성을 의미하는 감쇠계수(tanδ)는 88.2% 증가함을 확인하였다. 또한 EPDM 내 ENB 함량이 높을수록 소재의 가교밀도(crosslink density)가 증가하지만, 동적가교(dynamic vulcanizate) 과정 중 PP에 분산된 EPDM particle의 크기가 감소한다. 이로 인해 증가된 EPDM/PP 계면 간 면적 증가로 인해 계면 미끄러짐에서 기인한 손실탄성률(loss modulus)이 24.7% 증가하여 댐핑 특성이 향상되었다. 재료설계인자에 따른 물성분석을 바탕으로 최적 소재(낮은 PP 비율(14 wt%), 높은 ENB 함량 (8.9 wt%))를 배합한 결과 소재 댐핑 특성(tanδ peak)은 기존 소재(PP27, EPDM/PP 30/27, ENB content 5.7 wt%) 대비 140% 증가하여 재료설계인자에 따라 댐핑 특성을 제어할 수 있음을 확인하였다. 설계된 소재의 글라스 마찰 소음 개선 효과를 확인하기 위해 stick-slip 시험을 통해 마찰 소음을 평가하였다. 소재 댐핑 특성이 향상됨에 따라 마찰 진동의 가속도 peak가 약 57.9% 감소하였다. 이러한 결과로부터 재료설계인자에 따른 소재 댐핑 특성 향상을 통해 인너벨트 웨더스트립의 글라스 마찰 소음을 개선할 수 있음을 확인하였으며, 향후 소재 재료설계인자에 따른 물성 제어를 통해 부품의 요구 성능에 맞는 다양한 재료설계에 활용할 수 있을 것으로 기대된다.