• 제목/요약/키워드: Material cycle Model

검색결과 178건 처리시간 0.03초

생애주기비용 예측 기반 건물재료 경제성 평가 및 선정 (Evaluation and Selection of Building Materials based on Life Cycle Cost Prediction)

  • 안정환;임진강;오민호;이재욱
    • 한국BIM학회 논문집
    • /
    • 제5권2호
    • /
    • pp.34-45
    • /
    • 2015
  • As buildings become larger and more complicated, construction costs have increased with a considerable effect on buildings' Life Cycle Cost (LCC). However, there has been little consideration on economic aspects in the selection of construction materials due to limited information on the materials and dependency in architects' experience and inefficiency in cost estimation, causing design changes, increase in maintenance cost, difficulty in budgeting, and decrease in building performance. To solve these problems, this study proposed a BIM-based material selection model which reflects the comprehensive economic efficiency of building materials. Our cost prediction model can estimates the material-related cost during the entire building life cycle. Furthermore, we implemented the proposed model in connection with BIM, which can analyze and compare LCC by material. Through the validation of the model, we could confirm the necessity of LCC-based material selection in comparison with the conventional cost-centered material selection.

물질순환모델을 이용한 제주항의 수질관리(III) - 오염부하의 정량적 관리 - (Water quality management of Jeiu Harbor using material cycle model(III) - Quantitative Management of Pollutant Loadings -)

  • 조은일;강기봉
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.307-317
    • /
    • 2003
  • In this study, the material cycle model was applied to suggest alternative management of water quality for Jeju Harbor. The distribution of COD, DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphorus) concentrations was reasonably reproduced by simulations on the model area of the Jeju Harbor using a material cycle model. The simulations of COD, DIN and DIP concentrations were performed under the conditions of 20∼100% pollution loadings reductions from pollution sources. In case of the 100% reduction of the input loads from Sanzi river, concentrations of COD, DM and DIP were reduced to 39%, 78% and 52%, respectively at Jeju harbor. In contrast, in case of the pollutant loadings reductions from sediment, the effect of DIN and DIP reduction relatively seemed to increase around the center of study area. The 95% reduction of the pollutant loadings from river and sediment is required to meet the COD and nutrients concentration of second grade of ocean water quality criteria.

물질순환모델을 이용한 제주항의 수질관리(I) - 제주항의 물리해양환경의 변화 - (Water quality management of Jeiu Harbor using material cycle model(I) - The Variation of Physical Oceanographic Environments in Jeiu Harbor -)

  • 조은일;이병걸;오윤근
    • 한국환경과학회지
    • /
    • 제11권1호
    • /
    • pp.25-32
    • /
    • 2002
  • In order to control of water quality in Jeju harbor, variation of physical oceanographic environments was estimated using material cycle model. It is composed of the three-dimensional hydrodynamic model for the simulation at water flow and material cycle model for the simulation of water quality. The three dimensional hydrodynamic model simulation of the circulation and mixing in Jeju Harbor has been conducted forced by Sanzi River Discharge, Tidal elevation, wind and Solar heat in case of August and November, 2000 and February and May, 2001, respectively. The results of numerical model and observation show that the model can produce realistic results of current in the harbor. The monthly variation of velocity pattern are not so much changed are found In Jeju Harbor. The residual current was forced by temperature, salinity, density, wind and tidal current. The residual current of August, 2000 are the strongest among four month. It can be explained that the density effect can be important role in residual current at Jeju Harbor. As the results of salinity distribution simulation, very low concentration of all levels were simulated in August, 2000. The flowrate of Sanzi river was investigated 77,760 ㎥ /d in August, 2000. Therefore, pollutant loadings from Sanzi river should be considered for water quality management in Jeiu harbor.

물질순환 모델을 이용한 마산만의 질소, 인 수지 산정 (The Estimation of N, P mass Balance in Masan Bay using a Material Cycle Model)

  • 김동명;박청길;김종구
    • 한국환경과학회지
    • /
    • 제7권6호
    • /
    • pp.833-843
    • /
    • 1998
  • It is noted that the red tides and the oxygen-deficient water mass are extensively developed in Masan Bay during summer. The nutrients mass balance was calculated in Masan Bay, using the three-dimensional numerical hydrodynamic model and the material cycle model. The material cycle model was calibrated with the data obtained on the field of the study area in June 1993. The nutrients mass balance calculated by the combination of the residual currents and material cycle model results showed nutrients of surface and middle levels to be transported from the inner part to the outer part of Masan Bay, and nutrients of bottom level to be transported from outer part to inner part of Masan Bay. The uptake rate of DIN in the box A1(surface level of inner part) was found to be 337. 5mg/$m^3$ㆍday, the largest value in all 9 boxes and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1, and the regeneration rate of DIN was found to be 78.2mg/$m^3$ㆍday in the box A3(bottom level of inner part), and that of DIP was found to be 18.6mg/$m^3$ㆍday in box A1. The regenerations of DIN and DIP in the water column of the entire Bay were found to be 7.66ton/day and 760kg/day, respectively. And the releases of DIN and DIP from the sediments of the entire Bay were found to be 2.86ton/day and 634kg/day, respectively. The regeneration rate was 2.5 times as high as the release rate in DIN, and 1.2 times in DIP. The results of mass balance calculation showed not only the nutrients released from the sediments but the nutrients regenerated in water column to be important in the control and management of water quality in Masan Bay.

  • PDF

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.

물질순환모델을 이용한 울산해역의 수질예측 (The Prediction of Water Quality in Ulsan Area Using Material Cycle Model)

  • 신범식;김규한;편종근
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.55-62
    • /
    • 2006
  • Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.

5E 순환학습이 초등학생의 과학 학업 성취도와 탐구 능력 및 과학적 태도에 미치는 효과 (Effects of 5E Learning-Cycle Model on Science Academic Achievements, Science Process Skill and Scientific Attitude of Elementary School Students)

  • 동효관;송미영;신영준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제29권4호
    • /
    • pp.567-575
    • /
    • 2010
  • The purpose of this study is to investigate the effectiveness of academic achievements, science process skill and scientific attitude. The subjects of this study were 68 fourth-grade elementary school students who were 33 students for the 5E learning cycle instruction and 35 students for traditional instruction. The control group was taught with traditional teaching method, while the experimental group was taught 'the change to the volume of material due to heat' unit of 4th grade with the developed learning cycle model. The results were as fellows: First, the learning cycle instruction is more effective for understanding of a concept related to the change to the volume of material due to heat. Second, the learning cycle model seems more effective for the expansion of both scientific inquiry ability and scientific attitude.

  • PDF

저주기 피로해석을 위한 다층모델의 재료상수 추출에 관한 연구 (Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue(LCF) Analysis)

  • 김상호;카비르 후마이언;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.66-73
    • /
    • 2010
  • This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.

순수 비틀림 모멘트를 받는 직교 이방성체의 광탄성 시험법 개발에 관한 연구( I )-차원 광탄성 실험법 모델의 절단법과 $G_{i} 와 f_{ij}$ 의 측정법 - (A Study on the Development of Photoelastic Experiment for Orthotropic Material Under Pure Torsional Moment (I) : The Slicing Method Of 3-Dimensional Photoelastic Experiment Model And The Measuring Method of $G_{I} And f_{Ij}$)

  • 황재석;방창일
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.424-435
    • /
    • 1991
  • To develop the photoelastic experiment method for the orthotropic material under pure torsional moment is the main objective of this research. In the development of photoelastic experiment for orthotropic material under pure torsional moment, the important problems and their solutions are the same as following. In the model material for photoelastic experiment, it was found that C.F.E.C.(Copper Fiber Epoxy Composite) can be used as the model material of photoelastic experiment for orthotropic material. In the stress freezing cycle, it was assured that stress freezing cycle for epoxy can be used as the stress freezing cycle of the photoelastic experiment for orthotropic material. In the slicing method, it was found that the negative oblique slicing method can be effectively used as slicing method in 3-dimensional photoelastic experiment. In the measuring method of stress fringe values and physical properties in the high temperature, it was found that stress fringe values can be directly measured by experiment and physical properties can be directly or indirectly by equation between stress fringe values and physical properties developed by author. In the stress analysis method of orthotropic material under pure torsional moment by photoelastic experiment, it will be studied in the second paper.

알멘 스트립 시험 모사를 이용한 유한요소모델의 유효성 검증 및 잔류응력분포 계산 (Verification of Finite Element Model Using the Almen Strip Test and Its Applications to Calculate Residual Stress Distribution)

  • 양조예;박성호;이영석
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.172-178
    • /
    • 2012
  • We performed a shot peening test and used a 2-D finite element model which predicts the compressive residual stress distribution below the material's surface. In this study, the concept of 'impact cycle' is introduced to account for the irregularity in the shot's impact position during testing. The impact cycle was imbedded in the finite element model. In the shot peening test, shot bombarded a type-A Almen strip surface with different impact velocities. To verify the proposed finite element model, we compared the deformed cross sectional shape of the Almen strips with the shapes computed by the proposed finite element model. Good agreement was noted between measurements and the finite element model predictions. With the verified finite element model, a series of finite element simulations was conducted to compute the residual stress distribution below the material's surface and the characteristics of these distributions are discussed.