• Title/Summary/Keyword: Material Properties

Search Result 18,123, Processing Time 0.057 seconds

A study on repairing construction of Registered Cultural Properties of Jollanamdo -In consideration of material and patterns by repairing project- (전라남도 등록문화재의 수리공사에 관한 조사 연구 -수리공사에 따른 재료 및 형태 변화를 중심으로-)

  • Shin, Woong-Ju;Gill, Jong-Won
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • This study is a research examining reshaped pattern in the perspective of repairing parts and materials through repairing renovation of registered cultural properties constructed in modern times and results are as followings. Repairing construction of registered cultural properties of Jollanamdo according to parts is shown numerously in the order of roof, walls and windows, and mostly outworn as time passes on and leakage were the main cause of repair. Also when original shape was damaged by previous repair in the past, and this was another reason of repairing. It was surveyed that among the repairing job repair of damage occurred on the part of roofing area including water leakage, corrosion and damage of roofing material, and damage of groove channel were the most main cause of repair. Especially when roof leakage is occurred by outworn of roofing materials, this cause corrosion and damage of materials due to the damage of leakage parts and this cause repeating cycles of worse leakage again and again. Main repairing materials which deform the original shape of registered cultural properties were confirmed as copper plate used on the roof. Copper plate showing high frequency of application which replaces groove slate or cement roofing tile used on the roof before has high durability and anti-corrosion but it is considered improper material to recover original shape.

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

Dielectric Properties of Complex Microstructure for High Strength LTCC Material (고강도 LTCC 소재을 위한 복합구조의 유전특성)

  • Kim, Jin-Ho;Hwang, Seong-Jin;Sung, Woo-Kyung;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method (공진법을 이용한 1-3형 압전복합체의 단일상 등가물성 도출)

  • Kim, Jin-Wook;Pyo, Sung-Hun;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.368-376
    • /
    • 2011
  • Piezoelectric composites have been widely used in broadband acoustic transducers because of their lower acoustic impedance and higher electro-mechanical coupling factor. However, their complex structure has placed many limitations on the design of various transducers. This paper suggests the methodology to substitute the 1-3 piezocomposites by a single-phased material that has properties equivalent to those of the piezocomposites. The resonant method and finite element analysis (FEA) are used to derive the equivalent properties that can accurately depict resonant properties at various vibration modes of the piezocomposites. Validity of the suggested method is confirmed by comparing frequency characteristics of fabricated 1-3 piezocomposite specimens and FEA models. Further, accuracy of the derived material constants is checked by applying the equivalent properties to FEA models of the single phase material for various resonant modes.