• 제목/요약/키워드: Material Parameter Identification

검색결과 51건 처리시간 0.024초

Parameter Identification of a Synchronous Reluctance Motor by using a Synchronous PI Current Regulator at a Standstill

  • Hwang, Seon-Hwan;Kim, Jang-Mok;Khang, Huynh Van;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.491-497
    • /
    • 2010
  • This paper proposes an estimation algorithm for the electrical parameters of synchronous reluctance motors (SynRMs) by using a synchronous PI current regulator at standstill. In reality, the electrical parameters are only measured or estimated in limited conditions without fully considering the effects of the switching devices, connecting wires, and magnetic saturation. As a result, the acquired electrical parameters are different from the real parameters of the motor drive system. In this paper, the effects of switching devices, connecting wires, and the magnetic saturation are considered by simultaneously using the short pulse and closed loop equations of resistance and synchronous inductances. Therefore, the proposed algorithm can be easily and safely implemented with a reduced measuring time. In addition, it does not need any external or additional measurement equipment, information on the motor's dimensions, and material characteristics as in the case of FEM. Several experimental results verify the effectiveness of the proposed algorithm.

실외기 소음원 규명 및 소음저감 (Source Identification and Reduction of Noise for the Outdoor Unit of Room Air Conditioner)

  • 서상호;이근동;이내영;진심원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.575-581
    • /
    • 1998
  • The noise sources in the outdoor unit of RAC(Room Air Conditioner) are identified by the sound intensity method. The main noise sources are compressor noise and fluid noise which is caused by the fan, heat exchanger and shroud. First, the fluid noise is reduced through the design ol new fan and shroud with high flow rate and low noise, reduction of the system resistance by rearrangement of heat exchanger, and optimization of the complex parameter between the fan and shroud. Next, in order to reduce the compressor noise, the new shape of compressor mount and sound-proof material was applied. As a result, the overall noise was reduced by 4-5dB(A).

  • PDF

비선형 최소제곱법을 이용한 점탄성 감쇠를 갖는 원통셀의 실험진동해석 (Experimental Vibration Analysis for Viscoelastically Damped Circular Cylindrical Shell Using Nonlinear Least Square Method)

  • 민천홍;박한일;배수룡
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.41-46
    • /
    • 2008
  • It is a recent trend for advanced ships and submarines to incorporate composite structures with viscoelastically damping material. Much research has been done on curve-fitting techniquesto identify vibration characteristic parameters such as natural frequencies, modal damping ratios, and mode shapes of the composite structure. In this study, an advanced technique for accurately determining vibration characteristic of a circular cylindrical shell-attached viscoelastically damping material is used, based on a multi-degree of freedom (MDOF) curve-fitting method. First, an initial value is obtained by using a linear least square method. Next, using the initial value, the exact modal parameters of the composite circular cylindrical shell are obtained by using a nonlinear least square method. Results show computation time is greatly decreased and accurate results are obtained by the MDOF curve-fitting method.

A system of several fraction laws for the identification of rotating response of FG shell

  • Yahya, Ahmad;Hussain, Muzamal;Khadimallah, Mohamed A.;Khedher, Khaled Mohamed;Al-Basyouni, K.S.;Ghandourah, Emad;Banoqitah, Essam Mohammed;Alshoaibi, Adil
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.223-231
    • /
    • 2022
  • The problem is formulated by applying the Kirchhoff's conception for shell theory. The longitudinal modal displacement functions are assessed by characteristic beam ones meet clamped-clamped end conditions applied at the shell edges. The fundamental natural frequency of rotating functionally graded cylindrical shells of different parameter versus ratios of length-to-diameter and height-to-diameter for a wide range has been reported and investigated through the study with fractions laws. The frequency first increases and gain maximum value with the increase of circumferential wave mode. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The trigonometric frequencies are lower than that of exponential and polynomial frequencies. Stability of a cylindrical shell depends highly on these aspects of material. More the shell material sustains a load due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of vibrations is evaded by estimating their dynamical aspects.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

Performance Evaluation of Barlat's and BBC Yield Criteria based on Directionalities of R-values and Yield Stresses

  • 로얀산;배기현;이창수;박충희;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.277-280
    • /
    • 2009
  • This paper deals with the performance evaluation of Barlat's and BBC yield criteria by the directional variation prediction of the yield stresses and the R-values. for the evaluation of yield criteria, three kinds of Aluminum alloys and two kinds of steels were selected and their material properties are from Stoughton and Yoon's work. The experimental data required for the parameter evaluation included the uniaxial yield stresses and R-values (width-to-thickness strain ratio in uniaxial tension) measured in rolling direction, diaganol direction and the transverse direction, the equibiaxial yield stress and the R-value of equibiaxial tension. The optimization method, the Downhill Simplex method, was selected for the coefficient identification of Barlat91, Barlat97 and Barlat2000 yield criteria. Yield surface shapes, yield stress and R-value directionalities of Barlat's and BBC yield criteria were investigated and compared with the experimental data. Barlat2000 and BBC yield criteria were extremely qualified for the shape of the yield surface and the directionality of the yield stresses and the R-values.

  • PDF

Shape Study of Wear Debris in Oil-Lubricated System with Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Cho, Yon-Sang
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The wear debris is fall off the moving surfaces in oil-lubricated systems and its morphology is directly related to the damage and failure to the interacting surfaces. The morphology of the wear particles are therefore directly indicative of wear processes occurring in tribological system. The computer image processing and artificial neural network was applied to shape study and identify wear debris generated from the lubricated moving system. In order to describe the characteristics of various wear particles, four representative parameter (50% volumetric diameter, aspect, roundness and reflectivity) from computer image analysis for groups of randomly sampled wear particles, are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristics and recognized the friction condition and materials very well by neural network. We discuss how these approach can be applied to condition diagnosis of the oil-lubricated tribological system.

  • PDF

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.