• Title/Summary/Keyword: Material Decomposition

Search Result 629, Processing Time 0.027 seconds

The Role of Quantitative Traits of Leaf Litter on Decomposition and Nutrient Cycling of the Forest Ecosystems

  • Rahman, Mohammed Mahabubur;Tsukamoto, Jiro;Tokumoto, Yuji;Shuvo, Md. Ashikur Rahman
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.38-48
    • /
    • 2013
  • Decomposition of plant material is an important component in the study of forest ecosystem because of its critical role in nutrient cycling. Different tree species has different nutrient release patterns, which are related to leaf litter quantitative traits and seasonal environmental factors. The quantitative traits of leaf litter are important predictors of decomposition and decomposition rates increase with greater nutrient availability in the forest ecosystems. At the ecosystem level, litter quantitative traits are most often related to the physical and chemical characteristics of the litter, for example, leaf toughness and leaf mass per unit area, and lignin content tannin and total phenolics. Thus, the analysis of litter quantitative traits and decomposition are highly important for the understanding of nutrient cycling in forest ecosystems. By studying the role of litter quantitative traits on decomposition and nutrient cycling in forest ecosystems will provide a valuable insight to how quantitative traits influence ecosystem nutrient dynamics. Such knowledge will contribute to future forest management and conservation practices.

Effect of Al2O3 Addition on SF6 Decomposition by Microwave Irradiation (마이크로파 조사에 의한 SF6 분해시 Al2O3 첨가의 영향)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Silicon carbide with aluminium oxide was used to remove the sulphur hexafluoride ($SF_6$) gas using microwave irradiation. The destruction and removal efficiencies (DREs) of $SF_6$ were studies as a function of various decomposition temperatures and microwave powers. The decomposition of $SF_6$ gas was analyzed using GC-TCD. XRD (X-ray powder diffraction) and XRF (X-ray Fluorescence Spectrometer) were used to characterize the properties of aluminum oxide. DREs of $SF_6$ were increased as the microwave powers were increased. Additive aluminium oxide on SiC increased the removal efficiencies and decreased the decomposition temperature. The XRD results show that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during $SF_6$ decomposition by microwave irradiation. It was found that the best material to control $SF_6$ was SiC with $Al_2O_3$ 30 wt% in consideration of microwave energy consumption and $SF_6$ decomposition rate.

Estimation of the Properties for a Charring Material Using the RPSO Algorithm (RPSO 알고리즘을 이용한 탄화 재료의 열분해 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Yoon, Kyung-Beom;Kim, Tae-Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Fire characteristics can be analyzed more realistically by using more accurate properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property estimation techniques. In this study two optimization algorithms which are frequently applied for the inverse heat transfer problems are selected to demonstrate the procedure of obtaining pyrolysis properties of charring material with relatively simple thermal decomposition. Thermal decomposition is occurred at the surface of the charring material heated by receiving the radiative energy from external heat sources and in this process the heat transfer through the charring material is simplified by an unsteady 1-dimensional problem. The basic genetic algorithm(GA) and repulsive particle swarm optimization(RPSO) algorithm are used to find the eight properties of a charring material; thermal conductivity(virgin, char), specific heat(virgin, char), char density, heat of pyrolysis, pre-exponential factor and activation energy by using the surface temperature and mass loss rate history data which are obtained from the calculated experiments. Results show that the RPSO algorithm has better performance in estimating the eight pyrolysis properties than the basic GA for problems considered in this study.

Hazard Assesment of Dust Explosion Pharmaceutical Raw Material Powders (원료의약품 분진의 폭발 위험성 평가)

  • Kim, Won Sung;Lee, Keun Won;Woo, In Sung;Jeon, Sang Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.39-44
    • /
    • 2018
  • Dust explosions are occurring in a variety of industries. A dust explosion caused by a specific energy generates huge amount of energy in the ignition and releases decomposition gas. Damages can be increased since this released decomposition gas can cause second and subsequent explosions. In this study, the goal was to obtain practical information on what could affect the explosion by comparing the characteristics of two kinds of dusts with completely different chemical properties. Three kinds of dusts were measured and evaluated for explosion pressure, dust explosion index, explosion limit and minimum ignition energy. It is possible to grasp the characteristics of each dust and use it as useful accident prevention data in the production of raw material powder.

Damage detection on two-dimensional structure based on active Lamb waves

  • Peng, Ge;Yuan, Shen Fang;Xu, Xin
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-188
    • /
    • 2006
  • This paper deals with damage detection using active Lamb waves. The wavelet transform and empirical mode decomposition methods are discussed for measuring the Lamb wave's arrival time of the group velocity. An experimental system to diagnose the damage in the composite plate is developed. A method to optimize this system is also given for practical applications of active Lamb waves, which involve optimal arrangement of the piezoelectric elements to produce single mode Lamb waves. In the paper, the single mode Lamb wave means that there exists no overlapping among different Lamb wave modes and the original Lamb wave signal with the boundary reflection signals. Based on this optimized PZT arrangement method, five damage localizations on different plates are completed and the results using wavelet transform and empirical mode decomposition methods are compared.

MPM-Based Angular Animation of Particles using Polar Decomposition Theory (극 분해 이론을 활용한 MPM기반의 입자 회전 애니메이션)

  • Song, Chang-yong;Kim, Ki-hoon;Kim, Sun-jeong;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose a single framework based on the MPM(Material Point Method) that can represent the dynamic angular motion of the elementary particle unit. In this study, the particles can have various shapes while also describing linear and angular motion. As a result, unlike other particle-based simulations, which only represent linear movements of spherical (e.g. Circle, Sphere) particles, it is possible to express the visually dynamic motion of them. The proposed framework utilizes MPM, due to the fact that rotational motion can be decomposed and derived from large deformation. During the integration process of the presented technique, a deformation gradient tensor is decomposed by polar decomposition theory for extracting rotation tensor. By applying this together with the linear motion of each particle, as a result, it is possible to simultaneously express the angluar and linear motion of the particle itself. To verify the proposed method, we show the simulation of rotating particles scattering in the wind field, and the interaction(e.g. Collision) between a moving object and them by comparing the traditional MPM

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

Improvement of $CO_2$Decomposition by Impregnating Noble Metals to Nano-size (Ni, Zn)-ferrites (귀금속 첨가에 의한 나노 (Ni, Zn)-페라이트의 $CO_2$분해 향상)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Gang, Gye-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.846-850
    • /
    • 2001
  • In the present study, nano-size powders of ternary ferrites, $Ni_{0.5}Zn_{0.5}Fe_2O_4$, as the potential catalysts of $CO_2$decomposition, were prepared by the wet processing of hydrothermal synthesis and coprecipitation method, and the catalyzing effects of impregnation of the noble metals, Pt and Pd, onto $Ni_{0.5}Zn_{0.5}Fe_2O_4$for the $CO_2$decomposition were investigated. XRD results of the synthesized ferrites showed a typical spinel structure of ferrite and the particle size was very small as about 6~10 nm. BET surface area of the ternary ferrites was not affected by the impregnation of Pt and Pd. The reactivity of the $CO_2$decomposition to carbon was improved by the impregnation of the noble metals of Pd and Pt. The effect of Pd-impregnation on the $CO_2$decomposition rate was higher than Pt-impregnation.

  • PDF

The Thermal Changes of Precipitated Hydroxyapatite (습식 합성 Hydroxyapatite의 가열 분해성)

  • Kim, Chang-Eun;Park, Hoon;Kim, Bae-Yeon;Lee, Dong-Yoon
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.907-915
    • /
    • 1990
  • The hydroxyapatite powder was prepared by the precipitation method. The obtained powder was heat-treated and its products were investigated in order to characterize its decomposition process. The powder was Ca-deficient hydroxyapatite with no relation to the Ca/P mole ratio in the initial solution. The obtained hydroxyapatite was thermally decomposed into tricalcium phosphate [Ca3(PO4)2, TCP] after heat-treatment above 80$0^{\circ}C$ and the extent of the decomposition was dependent on the nonstoichiometry of obtained hydroxyapatite, and the resultant hydroxyapatite and tricalcium phosphate maintained stable forms up to 120$0^{\circ}C$. The hydroxyapatite powder had the better stability with the samller the nonstoichinometry of hydroxyapatite. And the quantities of tricalcium phosphate obtained after decomposition were decreased, and also the corresponding decomposition temperatures were increased with decreasing extent of nonstoichiometry in precipitated hydroxyapatite.

  • PDF

Reduction and Decomposition of Hazardous NOx by Discharge Plasma with $TiO_2$ ($TiO_2$ 촉매를 이용한 플라즈마반응에 의한 NOx의 분해)

  • Park, Sung-Gug;Woo, In-Sung;Hwang, Myung-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2008
  • The objective of this study is to obtain the optimal process condition and the maximum decomposition efficiency by measuring the decomposition efficiency, electricity consumption, and voltage in accordance with the change of the process variables such as the frequency, maintaining time period, concentration, electrode material, thickness of the electrode, the number of windings of the electrode, and added materials etc. of the harmful atmospheric contamination gases such as NO, $NO_2$, and $SO_2$ etc. with the plasma which is generated by the discharging of the specially designed and manufactured $TiO_2$ catalysis reactor and SPCP reactor. The decomposition efficiency of the NO, the standard samples, is obtained with the plasma which is being generated by the discharge of the combination effect of the $TiO_2$ catalysis reactor and SPCP reactor with the variation of those process variables such as the frequency of the high voltage generator($5{\sim}50kHz$), maintaining time of the harmful gases($1{\sim}10.5sec$), initial concentration($100{\sim}1,000ppm$), the material of the electrode(W, Cu, Al), the thickness of the electrode(1, 2, 3mm), the number of the windings of the electrode(7, 9, 11turns), basic gases($N_2$, $O_2$, air), and the simulated gas($CO_2$) and the resulting substances are analyzed by utilizing FT-IR & GC.