• Title/Summary/Keyword: Material Constants

Search Result 569, Processing Time 0.028 seconds

Finite Element Modeling of Low Density Polyurethane Foam Material (저밀도 폴리우레탄 포옴재료의 유한요소 모델링)

  • 김원택;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Evaluation of the Aging Life of the Rubber Pad in Power Window Switch

  • Kang, Yong Kyu;Choi, Byung Ik;Woo, Chang Su;Kim, Wan Doo
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.351-358
    • /
    • 2019
  • To evaluate the aging of a rubber pad in power window switch which is the part of a vehicle, the accelerated thermal aging test of rubber pad material is performed. Finite element analysis was performed using the nonlinear material constants of the rubber pad to calculate the operating force, and the Arrhenius relationship was derived from the aging temperature and time. The aging test was performed at 150, 180, 210, or 240 ℃ for 1 to 60 days. When the operating force of the rubber pad is changed by 10% from the initial value, the service life is expected to be 113 years, which is much longer than the life of the vehicle. This indicates that the aging life of the rubber pad is sufficiently safe and the operating force of the rubber pad during the life of the vehicle (20 years) was decreased by approximately 8.4%. By examining the correlation between the shear elastic modulus and operating force calculated from finite element analysis under each aging test condition, the changes in the operating force of the rubber pad and the shear elastic modulus showed good linear relationship. The aging life could be predicted by the change in shear elastic modulus and a process for predicting the aging life of automotive power window switch rubber pad parts is described herein.

Elasto-plastic Anisotropic Wood Material Model for Finite Solid Element Applications (탄소성이방성 솔리드 유한요소법 활용을 위한 목재 재료 모델 생성 연구)

  • Hong, Jung-Pyo;Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • A simplified material model, which was efficiently implemented in a three-dimensional finite solid element (3D FE) analysis for wood was developed. The bi-linear elasto-plastic anisotropic material theory was adopted to describe constitutive relations of wood in three major directions including longitudinal, radial and tangential direction. The assumption of transverse isotropy was made to reduce the requisite 27 material constants to 6 independent constants including elastic moduli, yield stresses and Poisson's ratios in the parallel, and perpendicular to grain directions. The results of Douglas fir compression tests in the three directions were compared to the 3D FE simulation incorporated with the wood material model developed in this study. Successful agreements of the results were found in the load-deformation curves and the permanent deformations. Future works and difficulties expected in the advanced application of the model were discussed.

A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock

  • Bagheripour, Mohammad Hossein;Rahgozar, Reza;Pashnesaz, Hassan;Malekinejad, Mohsen
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-81
    • /
    • 2011
  • In this paper, a complement to the Hoek-Brown criterion is proposed in order to derive the strength of anisotropic rock from strength of the corresponding truly intact rock. The complement is a decay function, which unlike other modifications or suggestions made in the past, is multiplied to the function of the original Hoek-Brown failure criterion for intact rock. This results in a combined and extended form of the criterion which describes the strength of anisotropic rock as a varying fraction of the corresponding truly intact rock strength. Statistical procedures and in particular regression analyses were conducted into data obtained in experiments conducted in the current research program and those collected from the literature in order to define the Hoek-Brown's criterion complement. The complement function was best described by a simple polynomial including only three constants to be empirically evaluated. Further investigations also showed that these constants can be related to the other readily available parameters of rock material which further facilitate determining the constants. A great and prime advantage of the proposed complement is that it is mathematically simple including the least possible number of empirical constants which are easily estimated with minimum experimental effort. Moreover, proposed concept does not suggests any change to the original Hoek-Brown criterion itself or its constants and serves whenever anisotropy does exist in the rock. This further implies on the possibility of using any other failure criterion for intact rock in conjunction with the compliment to reach the strength of anisotropic rock.

Characterization of [011] Poled Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals by Resonance Method (공진법 기반의 [011] 분극 Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 압전단결정 물성규명)

  • Je, Yub;Sim, Min Seop;Cho, Yohan;Lee, Wonok;Lee, Sanggoo;Lee, Jeong Min;Seo, Hee Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • [011] poled ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals have been investigated for active materials for acoustic transducers because of their high piezoelectric properties in both shear and transverse modes. In order to use [011] poled PIN-PMN-PT single crystals for acoustic transducers, the characterization of full-matrix material properties is required. In this study, full sets of compliance, dielectric, and piezoelectric constants of [011] poled rhombohedral PIN-PMN-PT were measured by a resonance method. Dimensions and geometries of 12 samples were proposed for measuring 17 independent material constants of [011] poled rhombohedral PIN-PMN-PT single crystals. Two sets of samples with different PT concentrations, 0.24PIN-0.49PMN-0.27PT and 0.24PIN-0.46PMN-0.30PT, were fabricated and their material properties were measured. Measured impedance spectra and simulated impedance spectra of the samples were compared to check the accuracy of the measurements.

Electrical Properties of TiO$_2$added ZnO (SnO$_2$가 첨가된 ZnO의 전기적성질)

  • 최우성;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.221-223
    • /
    • 1995
  • The electrical conductivity of SnO$_2$added ZnO was investigated using the DC and AC methods. The electrical conductivity of SnO$_2$added ZnO was decreased with increasing the concentration of SnO$_2$. The cal쳐lated effective dielectric constants of 3 mol%, 5 mo1%, and 7 mol% are ~7, ~13, and ~120, respectively. The factor of the decrease for the electrical conductivity seems to be the increase of the resistance of grain decreasing the size of grain.

Measurement of All the Material Constants of PVDF (PVDF 복소수 탄성, 유전, 압전 상수 측정)

  • 노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.5
    • /
    • pp.60-68
    • /
    • 1991
  • 압전 복합체 PVDF 의 복소수 탄성, 유전, 압전 상수를 측정하였다. 사용된 방법은 각각 초음파 투과법, 임피던스 분석법, 탄성 표면과 측정을 통한 수치해석을 이용하였고, 측정 치중 일부는 이미 보 고된 값들과 비교해보았다. 측정치의 신뢰성 증명을 위해 동일 기법을 압전 세라믹 PZT-5H에 적용해 검증하였다.

  • PDF

A Study on the Behavior for Automotive Grommet by Using FEA (유한요소해석을 이용한 자동차 그로멧의 거동에 대한 연구)

  • Han, Chang-Yong;Lee, Seong-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.74-79
    • /
    • 2010
  • Automotive industries are interested in material development with low weight and recycling. Grommet is made from EPDM at rubber and used as an automotive component. The nonlinear material properties of rubber are important to predict the behaviors of rubber product. This study concerns material property test to achieve stress-strain curve. Curve fitting is carried out to obtain the nonlinear material constant. The nonlinear material constants of rubber are used for the nonlinear finite element analysis. The results of finite element analysis is executed to predict the behavior property of grommet.

A Study on Variations of mechanical properties of Carbon-epoxy Composites with Thermal Fatigue Cycles or Thermal Shock Cycles (열적 피로 및 충격이 부가된 Carbon-Epoxy 복합재료의 기계적 특성에 관한 연구)

  • Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.354-659
    • /
    • 2000
  • Applications of composite materials have been in progress noticeably in manufacturing areas of automotive, aircraft and in other industries, resulting in ensuing research activities. Carbon-epoxy, one of major composite materials, is investigated for its thermal characteristics. Upon treatments of the composite material with repeated heatings and coolings variations of its elastic constants are monitored to reveal the thermal nature of the composite material. In this study, generally, changes in elastic constants are observed to occur mostly during the first 10~20 thermal cycles. Values of G(sub)13 remain almost unchanged except a minor decrease. However in the observed small changes thermal shocks produce less effect than thermal fatigues. On the other hand, values of $E_1$show gradual increases with the num-ber of applied thermal cycles and temperatures. Meanwhile, values of $E_2$ and G(sub)23 decrease to a certain extent in the early stage during the applications of thermal cycling but are not appreciable affected by frequencies of thermal cy-cles. Also, thermal shocks are observed to induce different effects depending on treatment temperatures.

  • PDF