• Title/Summary/Keyword: Material Constants

Search Result 569, Processing Time 0.13 seconds

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

Cyclic Properties of Li[Co0.17Li0.28Mn0.55]O2 Cathode Material

  • Park, Yong-Joon;Hong, Young-Sik;Wu, Xiang-Lan;Kim, Min-Gyu;Ryu, Kwang-Sun;Chang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.511-516
    • /
    • 2004
  • A Li$[Co_{0.17}Li_{0.28}Mn_{0.55}]O_2$ cathode compound was prepared by a simple combustion method. The X-ray diffraction pattern showed that this compound could be classified as ${\alpha} -NaFeO_2$ structure type with the lattice constants of a = 2.8405(9) ${\AA}$ and c = 14.228(4) ${\AA}$. According to XANES analysis, the oxidation state of Mn and Co ions in the compound were 4+ and 3+, respectively. During the first charge process, the irreversible voltage plateau at around 4.65 V was observed. The similar voltage-plateau was observed in the initial charge profile of other solid solution series between $Li_2MnO_3\;and\;LiMnO_2$ (M=Ni, Cr...). The first discharge capacity was 187 mAh/g and the second discharge capacity increased to 204 mAh/g. As the increase of cycling number, one smooth discharge profile was converted to two distinct sub-plateaus and the discharge capacity was slowly decreased. From the Co and Mn K-edge XANES spectra measured at different cyclic process, it can be concluded that irreversible transformation of phase is occurred during continuous cycling process.

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Cho, Dae-Hoon;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Far Feild test on Electromagnetic Wave Absorber in Paint Type for X-babd Radar (X-Band Radar용 도료형 전파흡수체의 실장실험)

  • 안영섭;김동일;정세모
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 1993
  • As a method to measure the absorbing characteristics of microwave absorber, various microwave measuring method can be used fundamentally. There is, however, a big problem in measuring errors, since the wavelength of microwave such as used for radar is very short. Therefor, this research aimed to design and fabricate a converting adaptor of 20mm .PHI. coaxial tube from a type-N connector to coaxial tube and to use it for evaluating absorption characteristics of microwave absorbor. Furthemore, the measurements of absorbing characteristics and material constants have been perfomed and reviewed, which were carried out by using the coaxial and by using rectangular waveguide, respectively. As a result, the validity of the proposed measuring method has been conformed. In this paper, a preliminary evalua- tion on the characteristics of the electromagnetic wave absorbor for X-band radar designed and fabricated for a laboratory use is performed by reflected power method near to a pratical use. Then for field test by using X-band radar is carried out with real target of $1.2m\times1.2m$ in size. As the result of the above, the usefullness of the designed and fabricated electromagnetic wave absorber in paint type for X-band radar has been confirmed.

  • PDF

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Identification of Substructure Model using Measured Response Data (계측 거동 데이터를 이용한 부분구조 모델의 식별)

  • Oh, Seong-Ho;Lee, Sang-Min;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.137-145
    • /
    • 2004
  • The paper provides a methodology of identifying a substructure model when sectional and material properties of the structure are not the a priori information. In defining a substructure model, it is required that structural responses be consistent with the actual behavior of the part of the structure. Substructure model is identified by estimating boundary spring constants and stiffness properties of the substructure. Static and modal system identification methods have been applied using responses measured at limited locations within the substructure. Simulation studies for static and dynamic responses have been carried. The results and associated problems are discussed in the paper. The procedure has been also applied to an actual multi-span plate-girder Gerber-type bridge with dynamic responses obtained from a moving truck test and construction blasting vibrations.

Studies on the Application of the Spent Alkaline Manganese Batteries Powder as an Adsorbent for Nickel Ion (폐(廢)알칼리망간전지(電池) 분말(粉末)의 니켈 이온 흡착제(吸着劑)로서의 활용(活用)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • The adsorption features of $Ni^{2+}$ onto spent alkaline manganese batteries powder have been investigated with the adsorbent dose, initial concentration of adsorbate and temperature as the experimental variables. The adsorption reaction of $Ni^{2+}$ ion followed the pseudo-second order rate model, and the adsorption rate constants($k_2$) decreased with increasing initial concentration of nickel ion. The equilibrium adsorption data were fitted to the Langmuir and Freundlich models. The Freundlich model represents the equilibrium data better than the Langmuir model in this initial adsorbate concentration range. As the temperature increased, the adsorbed amount of nickel ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results obtained along with temperatures, thermodynamic parameters such as ${\Delta}H^{\circ},\;{\Delta}G^{\circ},\;and\;{\Delta}S^{\circ}$ were calculated.

Lead Adsorption onto a Domestic Ca-Bentonite (국산 칼슘-벤토나이트에 대한 납 흡착)

  • 고은옥;이재완;조원진;현재혁;강철형;전관식
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Bentonite has low hydraulic conductivity and high sorption capacity to limit hazardous heavy metals migration, and thus it has been considered as a liner material for the landfill of hazardous wastes. With a domestic bentonite sorption tests were carried out to investigate the adsorption isotherm and the effect of solution chemistry and temperature on adsorption. Freundlich isotherm was applied to fit the experimental data of lead adsorption, which fitted them well. Freundlich constants and correlation coefficient were calculated to be $K_{F}$\;=\;1.14$, n = 1.70, and $r^{2}\;=\;0.99$, respectively. The distribution coefficients($K_{d}$) for the adsorption of lead decreased with increasing initial lead concentration. The IL increased with increasing the pH of solution and sharply increased at pH > 7, which was attributed to the precipitation of lead species. The IL decreased with increasing the ion strength of solution. The $K_{d}$ gave a small increase with the concentration of ${SO_4}^{-2}$, whereas it had a nearly constant level with the concentration of ${HCO_3}^{-}$ in solution. An increase in the temperature of experimental solution increased the $K_{d}$.

  • PDF