• Title/Summary/Keyword: Material Constants

Search Result 569, Processing Time 0.026 seconds

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

Propagation Constant and Material constants of Metamaterials (Metamaterial의 전파 상수 및 물질 상수)

  • Lee, Dong-Hyun;Kim, Jae-Hee;Park, Wee-Sang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.69-74
    • /
    • 2008
  • The propagation constant, which is defined for a double-positive (DPS) material of positive permittivity (${\varepsilon}'$) and permeability (${\mu}'$), is extended and derived for an epsilon-negative (ENG) material (${\varepsilon}'<0,\;{\mu}'>0$), a mu-negative (MNG) material (${\varepsilon}'>0,\;{\mu}'<0$), and a double-negative (DNG) material (${\varepsilon}'<0,\;{\mu}'<0$). By investigating how the permittivity loss (${\varepsilon}"$) and permeability loss (${\mu}"$) terms affect the propagation constant, we determine that the wave in the materials propagates as a right-handed (RH) triad or a left-handed (LH) triad. Regardless of the magnitudes of ${\varepsilon}"$ and ${\mu}"$, DPS and DNG materials become RH and LH media, respectively. However, ENG and MNG materials possess unusual characteristics that both materials become a RH medium when the sign of (${\varepsilon}'{\mu}"+{\varepsilon}"{\mu}'$) is positive and they become a LH medium when the sign is negative.

Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

  • Mojtaba Safari;Hasan Biglari;Mohsen Motezaker
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.743-757
    • /
    • 2023
  • In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and three-layered theories in different geometrics are described at 30℃ and 90℃; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

Evaluation of the Nonlinearity Parameter in Unbound Material for Asphalt Concrete Pavement using Field-NDT Equipment (현장 도로평가장비를 이용한 입상재료층의 비선형 재료상수 추정에 관한 연구)

  • Seo, Joo Won;Choi, Jun Seong;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.227-234
    • /
    • 2008
  • This study examines which models are more suitable for representing mechanical property of unbound materials to analyze behavior of asphalt pavement structure. Results from FWD (Falling Weight Deflectometer) test were used to apply to nonlinear elastic model. The new method which can deduct material constants of nonlinear elastic model is suggested from FWD test data rather than laboratory resilient modulus ($M_R$) test. It is confirmed that the material constants are within the common range in subbase. Test output from FWD and MDD (Multi-Depth Deflectometer) was used to verify reliability of the model. From the results of verification, this study shows that a non-linear elastic model agrees to MDD test data more than a linear elastic model does.

Properties of Three Kinds of Ferrite/Rubber Composite Microwave Absorbers with Various Composition Ratio (조성비에 따른 3종 페라이트/고무 복합형 전파흡수체의 특성)

  • Ryu, Young-Jun;Jun, Hong-Bae;Kim, Cheol-Han;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1680-1682
    • /
    • 1999
  • In this study, three kinds of Mn-Zn ferrite/Ni-Zn ferrite/$Ni_2Y$ ferroxplana prepared by the coprecipitation method were compounded with the silicon rubber, and the ring-shaped specimens with various compositional ratio were made. The material constant of ferrite/rubber composite absorbers was obtained by the 2-port method. The material constants of the ferrite/rubber composite microwave absorber made of three kinds of ferrite with various compositional ratio were utilized in design the matching conditions (frequency and thickness) on the impedance matching map. We were able to predict the matching condition from the matching map. On all three kinds of ferrite/rubber composite microwave absorber with less than compositional ratio 60[wt.%] of ferroxplana, we have found that the reflection losses were over than 20[dB] at the S-Band $(2\sim4[GHz])$ and C-Band$(4\sim8[GHz])$.

  • PDF

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).

Water Storage and Intake Performance of Gabion Weirs during Recharge (인공함양 원수확보를 위한 돌망태 보의 저류 및 취수성능에 관한 연구)

  • Han, Il Yeong;Kim, Gyoo Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The water-storage performance of an intake weir can be evaluated by stage-discharge ratings. The stage-discharge rating of a gabion weir depends on the physical characteristics of the filling materials. This study reviewed existing discharge formulae for the evaluation of the water-storage performance of gabion weirs. A previously published relationship between the characteristics of filling materials and experimental constants was adapted for stage-discharge rating. The mean size of the filling material is the most influential factor for the water intake and water-storage performance of gabion weirs.

Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet (원형 다공 평판의 면내 유효 물성치 계산)

  • 정일섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)O3 Ceramics and Thin Films ((Bi,Nd)(Fe,Ti)O3 세라믹스와 박막의 상형성 거동)

  • Kim, Kyung-Man;Lee, Hee-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.949-955
    • /
    • 2010
  • Nd and Ti co-doped bismuth ferrite $(Bi_{1-x}Nd_x)(Fe_{1-y}Ti_y)O_3$ (x, y = 0, 0.05, 0.1, 0.2) ceramics and thin films were synthesized through the conventional mixed-oxide process and pulsed laser deposition (PLD), respectively. Nd and Ti co-doping effect was examined with emphasis on how these impurities affect phase formation behavior as there could be the improvement in leakage current problems often associated with multiferroic $BiFeO_3$ (BFO) thin films. The lattice constants of BFO ceramics decreased with Nd doping concentration up to 10mol%, while they further decreased with Nd and Ti co-doping to about 20%. BFO thin films obtained by the PLD process revealed random polycrystalline structure. Similar to bulk BFO ceramic, Nd and Ti co-doping effectively suppressed the formation of unwanted secondary phase and thus stabilized the perovskite phase in BFO thin films.