• Title/Summary/Keyword: Material Balance Analysis

Search Result 174, Processing Time 0.027 seconds

A Study on Chamber Wall Effect in the Satellite Thermal Balance Test (위성 열평형 시험에서 챔버 벽 영향에 관한 연구)

  • Kim, Dong-Un;Jang, Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.90-95
    • /
    • 2006
  • The wall of thermal vacuum chamber which is used for the satellite thermal balance test doesn't absorb satellite's IR emission perfectly and reflects some part of that. It is estimated that small thermal vacuum chamber has relatively larger wall effect than the big one. The small thermal vacuum chamber is required for the small satellite test to reduce the test cost. A quantitative analysis was carried out to investigate the chamber wall effect. As a result, temperature errors caused by chamber wall effect was calculated, and the temperature data acquired in the thermal balance test have been compensated. By defining the optimized area ratio between chamber surface and satellite surface area, the baseline to be able to determine the minimum size of thermal vacuum chamber was established to minimize the wall effect. Also, theoretical analysis about transparent material coating which can reduce the chamber wall effect is conducted.

Vibration Control of Reinforced Concrete Slabs (철근콘크리트 슬래브의 진동제어)

  • 변근주;노병철;유동우;이호범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.201-206
    • /
    • 1993
  • As the vibration loads are variable and the design criteria are more strict, in this study, the dynamic characteristics of the slab is analyzed and the and the vibration is controlled for the special peculiarity of structures. First, the procedure of dynamic analysis is developed by the finite element method and then examined by using the slab model tests. Second, in order to improve the dynamic characteristics, the effects of the number of supports, material properties, position of exciting force, added mass and dynamic balance on the dynamic behavior of reinforced concrete slabs are analysed. It is concluded that the vibration can be controlled by the change in the natural frequency of system and the use of the high-strength concrete or polymer impregnated concrete (PIC), and the dynamic characteristics can be considerably affected by the arrangement of equipments, added mass, and dynamic balance, etc.

  • PDF

Simulation of Temperature Behavior in Hydrogen Tank During Refueling Using Cubic Equations of State (3차 상태방정식을 이용한 수소 충전 온도 거동 모사)

  • PARK, BYUNG HEUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.5
    • /
    • pp.385-394
    • /
    • 2019
  • The analysis of temperature behavior of a hydrogen tank during refueling is of significance to clarify the safety of the compressed hydrogen storage in vehicles since the temperature at a tank rises with inflow of hydrogen. A mass balance and an energy balance were combined to obtain analytical model for temperature change during the hydrogen refueling. The equation was coupled to Peng-Robinson-Gasem (PRG) equation of state (EOS) for hydrogen. The PRG EOS was adopted after comparison with other four different cubic EOSs. A parameter of the model was determined to fit data from experiments of various inlet flow rates and temperatures. The temperature and pressure change with refueling time were obtained by the developed model. The calculation results revealed that the extent of precooling was more effective than the flow rate control.

Advanced Depreciation Cost Analysis for a Commercial Pyroprocess Facility in Korea

  • Kim, Sungki;Ko, Wonil;Youn, Saerom;Gao, Ruxing;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.733-743
    • /
    • 2016
  • The purpose of this study is to present a rational depreciation method for a pyroprocess cost calculation. Toward this end, the so-called advanced decelerated depreciation method (ADDM) was developed that complements the limitations of the existing depreciation methods such as the straight-line method and fixed percentage of declining-balance method. ADDM was used to show the trend of the direct material cost and direct labor cost compared to the straight-line or fixed percentage of the declining-balance methods that are often used today. As a result, it was demonstrated that the depreciation cost of the ADDM, which assumed a pyroprocess facility's life period to be 40 years with a deceleration rate of 5%, takes up 4.14% and 27.74% of the pyroprocess unit cost ($781/kg heavy metal) in the $1^{st}$ and final years, respectively. In other words, it was found that the ADDM can cost the pyroprocess facility's capital investment rationally every year. Finally, ADDM's validity was verified by confirming that the sum of the depreciation cost by year, and the sum of the purchasing cost of the building and equipment, are the same.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

Normal Zone Propagation Properties of Bi-2223/Ag Tape and Prototype HTS Cable (Bi-2223/Ag 데이프 및 Protype HTS 케이블의 상전도 영역전파 특성)

  • 김상현;이병성;김영석;장현만;백승명;한철수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.345-350
    • /
    • 2001
  • Normal zone propagaton(NZP) properties were investigated on Bi-223/Ag tapes and prototype HTS cable. NZP experiments in tape were conducted in temperatures from 45K to 77K in zero field. Prototype HTS cable was molded using epoxy and the experiments were carried out under adiabatic condition in LN$_2$. NZP velocities in tapes with tow conditions of DC and AC currents were almost same at each temperature. NZP velocity in prototype HTS cable was 1.9-2.4 cm/sec in LN$_2$. Numerical analysis was carried out by a one-dimensional equation of heat balance. The simulation results of NZP velocity in Bi-2223/Ag tapes were similar to the experimental results.

  • PDF

Normal Zone Propagation Properties of Ag Sheathed Bi-2223 Tape for HTS Cable and Cylindrical Stacked Conductor (HTS 케이블용 은시스 Bi-2223 테이프 및 원통형 적층 도체의 상전도 영역전파 특성)

  • 이병성;김영석;장현만;백승명;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.448-451
    • /
    • 2000
  • Normal zone propagation(NZP) characteristics were investigated on Ag sheathed Bi-2223 tape and cylindrical stacked conductor. Normal zone propagation(N2P) experiments with tape were conducted with refrigerator in temperature from 45 K to 77 K, 0 T. Cylindrical stacked conductor was molding with epoxy and experiments were conducted with adiabatic condition in $LN_2$. NZP velocities of tape with two condition of DC and AC were almost same at each temperature. NZP velocities of cylindrical stacked conductor were 1.9-2.4 cdsec in $LN_2$. Numerical analysis was carried out by a one-dimensional heat balance equation. As a result, simulated results of NZP velocity with Bi-2223 tape were similar to experimental results in DC.

  • PDF

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Evaluation of nuclear material accountability by the probability of detection for loss of Pu (LOPu) scenarios in pyroprocessing

  • Woo, Seung Min;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.198-206
    • /
    • 2019
  • A new methodology to analyze the nuclear material accountability for pyroprocessing system is developed. The $Pu-to-^{244}Cm$ ratio quantification is one of the methods for Pu accountancy in pyroprocessing. However, an uncertainty in the $Pu-to-^{244}Cm$ ratio due to the non-uniform composition in used fuel assemblies can affect the accountancy of Pu. A random variable, LOPu, is developed to analyze the probability of detection for Pu diversion of hypothetical scenarios at a pyroprocessing facility considering the uncertainty in $Pu-to-^{244}Cm$ ratio estimation. The analysis is carried out by the hypothesis testing and the event tree method. The probability of detection for diversion of 8 kg Pu is found to be less than 95% if a large size granule consisting of small size particles gets sampled for measurements. To increase the probability of detection more than 95%, first, a new Material Balance Area (MBA) structure consisting of more number of Key Measurement Points (KMPs) is designed. This multiple KMP-measurement for the MBA shows the probability of detection for 8 kg Pu diversion is greater than 96%. Increasing the granule sample number from one to ten also shows the probability of detection is greater than 95% in the most ranges for granule and powder sizes.