• Title/Summary/Keyword: Material Allowable

Search Result 257, Processing Time 0.033 seconds

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Development of Adjust Plate Progressive Die (자동차용 Adjust Plate Progressive 금형 개발)

  • Bae, Yong-Hwan;Ban, Gab-Su
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.1-4
    • /
    • 2002
  • A automatic production system was developed for high productivity and safety. The semi-progressive die was unfavorable for more productivity, safety, material extravagance and incongruent high-speed production. Developed progressive die is suitable for the high production and guarantee triple production by acceptance of three array type for automobile adjust plate. We adopt Pro-$Engineer{\circledr}$ for three dimensional computer aided design suitable for the disassembly and assembly evaluation. The conclusion of this study is as follow. First, press die parts solid modeling system is built by using Pro-$Engineer{\circledr}$ through this research and verified allowable tolerance and possibility of assembly and disassembly of parts. Therefore we can reduce die manufacturing time and cost. Second, We produce 1000 units pet hot coil 1ton by traditional method, but we can acomplish material saving effect about 12% as 120 units in case of new progressive die. Fourth, we acomplished manufacturing cost curtailment effect more than 20% in comparison with traditional method.

Growth and Photoconductive Characteristics of $CdS_{1-x}Se_x$ Thin Films by the Hot Wall Epitaxy

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.349-352
    • /
    • 2004
  • The $CdS_{1-x}Se_x$ thin films were grown on the GaAs(100) wafers by a Hot Wall Epitaxy method(HWE). The temperatures the source and the substrate temperature are $580^{\circ}C\;and\;440^{\circ}C$ respectively. The crystalline structure of thin films was investigated by double crystal X-tay diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time.

  • PDF

Evaluation on the Structural Integrity and Fatigue Life of a Continuous Ship Unloader for Harbor Use (항만용 연속하역기 거더의 구조 강도와 피로 수명 평가)

  • Kim, Jung-Joo;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.53-59
    • /
    • 2019
  • Continuous ship unloaders (CSUs) are used for the uninterrupted transport of material in processing industries, power plants, and harbors in accordance with the stream rate of the material. This study analyzed the structural integrity and fatigue life of a CSU structure using finite element structural analysis in ANSYS APDL software. The stress varied greatly depending on the luffing angle and the slew angle of the boom conveyor. The structural integrity of the CSU girder was evaluated by applying ASME BPVC Section VIII Division 2. The fatigue cycle at the angle with the greatest stress difference was calculated. The fatigue cycle was calculated by applying the JIS B 8821:2013 fatigue curve. It was confirmed that the fatigue cycle of the CSU satisfies the allowable fatigue of 200,000 cycles.

The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines

  • Kim, Y.P.;Kim, W.S.;Bang, I.W.;Oh, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.36-41
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

A Study on the Increase of Bearing Capacity of Soft Ground in Shallow Foundation Using High Density Rapid Expansion Material (고밀도 급속 팽창재를 이용한 얕은기초 연약지반의 지내력 증대에 관한 연구)

  • Ro, Euichul;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.185-198
    • /
    • 2020
  • High-density rapid expansion material is a method that increases the solid volume of injection materials due to hydration and foam reactions at the same time as spraying. It is an effective method for securing ground stability, restoring subsidence, and loading during construction of structures. In this regard, through the mechanical experiments of injection materials, the stability of the foundation ground of the structure and the effect of increasing the endurance using site construction were analyzed. The results of the experiment showed that the unit weight of soil decreased by 10.5% after injection of the filling material, and the allowable support for the structure was deemed safe, and the subsidence by each section after ground improvement was determined to be safe at 2.28, 1.55 and 0.46 cm, respectively, with an acceptable subsidence of less than 5 cm. After the field test, five inclinometers were installed on the top floor of the target building to measure the displacement of the X and Y axes. As a result of the measurement, no displacement related to the phenomenon of inequality or subsidence cracks of the structure was measured for about 16 months (509 days) after construction. This can be judged to be a sufficient increase in the stability of the ground after the injection of rapid expansion.

Performance Evaluation of Pile-Filling Material Using High Calcium Ash by Field Loading Test (고칼슘 연소재를 이용한 매입말뚝 주면고정액의 현장 재하시험을 통한 성능평가)

  • Seo, Se-Kwan;Kim, You-Seong;Lim, Yang-Hyun;Jo, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.17-24
    • /
    • 2018
  • In this study, static load test and dynamic load test were performed to evaluate pile-filling material (ZA-Soil) of soil-cement injected precast pile method which was developed by using the ash of circulating fluidized boiler as a stimulant for alkali activation reaction of blast furnace slag. As a result of the static load test, the allowable bearing capacity of pile was 1,350 kN, which was the same as the result of using ordinary portland cement. And total settlement was 6.97 mm, and net settlement was 1.48 mm. These are similar to the total settlement, 7.825 mm, and net settlement, 2.005 mm of ordinary portland cement. As a result of the dynamic load test and CAPWAP analysis, the skin friction was 375.0 kN, the end bearing capacity was 3,045.9 kN, and the allowable bearing capacity was 1,368.36 kN. These results are similar to the results of using ordinary portland cement as pile-filling material.

Growth and Photoconductive Characteristics of $ZnGa_2Se_4$ Epilayers by the Hot Wall Epitaxy

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.263-266
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $ZnGa_2Se_4$ single crystal thin films were prepared from horizental furnace. The polycrystal structure obtaind from the power x-ray diffraction was defect chalcopyrite. The lattice costants $a_0\;and\;c_0\;were\;a_0=5.51\;A,\;c_0=10.98\;A$. To obtains the single crystal thin films, $ZnGa_2Se_4$ mixed crystal were deposited on throughly etched Si(100) by the Hot Wall Epitaxy (HWE) system. The temperates of the source and the substrate were $590^{\circ}C\;and\;450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to dark current(pc/dc), maximum allowable rower dissipation(MAPD), spectral response and response time.

  • PDF

Growth and Photosensor Properties for $AgInS_2$ Single Crystal Thin Film ($AgInS_2$ 단결정 박막 성장과 광센서 특성)

  • Hong, Kwang-Joon;Baek, Seong-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.134-135
    • /
    • 2006
  • $AgInS_2$ single crystal thin filmsl was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $680^{\circ}C$ and $410^{\circ}C$ respectively, and the thickness of the single crystal thin films is $6{\mu}m$. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInS_2$ single crystal thin film, we have found that the values of spin orbit coupling ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0098 eV and 0.15 eV at 10 K, respectively. In order to explore the applicability as a photoconductive cell, we measured the sensitivity ($\gamma$), the ratio of photocurrent to darkcurrent (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time. The result indicated that the samples annealed in S vapour the photoconductive characteristics are best. Therefore we obtained the sensitivity of 0.98, the value of pc/dc of $1.02{\times}10^6$, the MAPD of 312 mW, and the rise and decay time of 10.4ms and 10.8ms respectively.

  • PDF

Possibility for the Replacement of Recycled Plastic Products on Timber Ginseng Cultivation Facilities (목재 인삼재배시설에 대한 재생플라스틱의 대체 가능성 평가)

  • Song, Hosung;Lim, Seong-Yoon;Kim, Yu-Yong;Yu, Seok-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • This study was conducted to examine the possibility of use as a structural material for ginseng cultivation facilities of recycled plastics. In order to determine the possibility that recycled plastic can replace timber used as a structural material for ginseng cultivation facilities, the specimens collected by elapsed time were compared with timber through bending tests. In addition, in order to analyze the effect of external environmental conditions on recycled plastic products, bending test was conducted with the specimens that had completed weathering test and accelerated heat aging test respectively. As a result, the bending strength of recycled plastic specimens with the elapsed time of 360 days was lower than that of timber. But bending strength of recycled plastic specimens exceeded the design allowable stress standard set by the Korea design standard (MOLIT, 2016). There was no degradation in quality of recycled plastic due to the external environment, and it was found that there would be no problem even if it was used as a structural material for ginseng cultivation facilities.