• 제목/요약/키워드: Material

검색결과 71,314건 처리시간 0.071초

SCM440 경화 처리강의 선삭저항에 관한 연구 (A Study on the Turning of SCM440 Hardened Steel)

  • 정기영
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.102-107
    • /
    • 1999
  • In this paper hardened SCM440 material and annealed SCM440 material are for cutting experiments by the cutting con-dition which is chosen respectively by tool three components of cutting force are recorded using multicorder, Then the surface roughness for various force are measured by Roughness Tester. The results of the experiment are summarized as follow. The hardened material cut by ceramic tool(BX20) gives the highest radial component values among the cutting resistance radial components is increased higher for the higher cutting speed even though vertical component and axial component tend to decrease. But when the annealed material was cut increase in cutting speed results in the increase of three component forces. Since ceramic insert tip used the experiment hardly affect Built-up Edge and heat the cutting resistance decrease slightly regardless of the increased of cutting speed. The hardened material has higher three compo-nent force value than the annealed material because the material of high hardness is increased cutting resistance. The low-est cutting forces for hardened material and annealed material are shown in the cutting speed of 60m/min and 180m/min. respectively.

  • PDF

유기체 생명감각을 연상시키는 실내공간 재료 표현에 관한 연구 (The Study on Material Expression of Interior Design to image the Sense of Being Alive)

  • 김정신;임오연
    • 한국실내디자인학회논문집
    • /
    • 제38호
    • /
    • pp.100-107
    • /
    • 2003
  • The space can recognize by experience of sense, the each space to make identity through this. The contemporary architecture make possible an experience of sense through a complex paradigm and a composite concept expression. The material is not the assist to make a form, but to induce an image and an emotion of designers. The new material make possible the different design expression and the new aesthetic value. The appearance of difference material means the possibility to realize a designer's concept. The purpose of the study Is to analyze the new possibility of material expression through the study on material expression of interior design to associate the sense of being alive, to use basic data of the relation the material and the creativity. The study range is to define the sense of being alive, to image expression of material. It is to analyze the expression method of materials through to analyze the contemporary interior design. The expression method of materials to image the sense of being alive is direct and indirect and compromise. The interior design is visually to realize designer's concept, and the interior designer has to realize their it. The later study is on detail of material, in order to realize of material.

Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation

  • Rachedi, Mohamed Ali;Benyoucef, Samir;Bouhadra, Abdelhakim;Bouiadjra, Rabbab Bachir;Sekkal, Mohamed;Benachour, Abdelkader
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.65-80
    • /
    • 2020
  • This paper presents a theoretical investigation on the response of the thermo-mechanical bending of FG plate on variable elastic foundation. A quasi-3D higher shear deformation theory is used that contains undetermined integral forms and involves only four unknowns to derive. The FG plates are supposed simply supported with temperature-dependent material properties and subjected to nonlinear temperature rise. Various homogenization models are used to estimate the effective material properties such as temperature-dependent thermoelastic properties. Equations of motion are derived from the principle of virtual displacements and Navier's solution is used to solve the problem of simply supported plates. Numerical results for deflections and stresses of FG plate with temperature-dependent material properties are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of FG thick plates.

소형항공기용 복합재료 인증시험 (Advanced Methodology of Composite Materials Qualification for Small Aircraft)

  • 이호선;민경주
    • 한국항공우주학회지
    • /
    • 제35권5호
    • /
    • pp.446-451
    • /
    • 2007
  • 그동안 소형항공기에 사용하는 재료에 대해서도 대형항공기와 동일하게 요구하여 왔으나, 대형항공기 제조사에 비해 규모가 작은 소형항공기 제조사에서는 이 기준을 맞추기 위하여 많은 시험을 수행해야 하므로 큰 어려움을 겪어왔다. 최근 미국 FAA/NASA에서는 새로운 정책으로 요구조건을 변경하여 복합재 소형항공기를 인증하여 소형항공기 산업을 발전시키고 있다. 본 논문에서는 새롭게 바뀐 복합재료 인증 방법론에 대하여 설명하고, 예로서 이 방법을 사용하여 국산 350°F 탄소섬유/에폭시 복합재료의 설계허용값을 산출하였다.

AZ31-(0~0.5)%Ca 합금의 미세조직과 기계적 성질 (Microstructures and Mechanical Properties of AZ31-(0~0.5%)Ca alloys)

  • 전중환;박봉구;김정민;김기태;정운재
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.299-304
    • /
    • 2004
  • Influence of Ca addition on microstructure and room temperature mechanical properties has been studied for AZ31(Mg-3%Al-1%Zn-0.2%Mn)-(0~0.5)%Ca wrought alloys, based on experimental results from metallography, X-ray diffractometry and mechanical tests. Yield strength, ultimate tensile strength and hardness of the alloys increased remarkably with increasing Ca content, whereas elongation was deteriorated continuously. Microstructural examination revealed that Ca addition efficiently refined grains of ${\alpha}$(Mg) phase and that some of the Ca dissolved in ${\beta}(Mg_{17}Al_{12})$ precipitates. The former and the latter facts are thought to be responsible for improved strength and loss of ductility of the AZ31+Ca wrought alloys, respectively.

차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구 (A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module)

  • 조호준;김정태;채호중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성 (Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part)

  • 김영균;박종관;이기안
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2018
  • In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

Study on the Rigidity of the Solid-HDDR Treated Nd-Fe-B-type Materials

  • Kang, S.J.;Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제3권1호
    • /
    • pp.9-14
    • /
    • 1998
  • A non-coercive cast Nd-Fe-B-type material can be easily converted into a coercive one by employing HDDR process. Applying the conventional HDDR process to the Nd-Fe-B-type material generally leads to a powder-like material. HDDR treated material in a solid form can, however, be realised if the process is properly modified (solid-HDDR). In the present study, the change of rigidity (compressive strength) of the Nd-Fe-B-type material during the solid-HDDR has been investigated using a homogeneous sintered magnet with composition $Nd_{13.8}Dy_{0.7}Fe_{78.25}Si_{0.15}Mn_{0.6}B_{6.5}.$ It has been found that the low strength of the hydrided material was improved by the subsequent disproportionation. The restoration of the strength was explained by the eutectoid-like disproportionation structure containing fine neodymium hydride rod embedded in tough iron matrix. The high strength of disproportionated material was reduced radically in earlier stage of recombination, and this wes explained by the reduction of the disproportionated phase. The reduced strength was, however, recovered by further recombination, and this was explained by the fact that as the recombination continues the recombined grains adhere together. The optimally HDDR processed material has a comparable or even higher strength with respect to the initial sintered material prior to the solid-HDDR. The present study suggested that the rigidity of Nd-Fe-B-type material could be retained even after the solid-HDDR.

  • PDF

플랜트 기자재 설계품질 향상을 위한 STAGE-GATE 기반 평가항목 개발 (Development of STAGE-GATE based Evaluation Index for the Improvement of Design Quality of Plant Material)

  • 이인태;백동현
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.65-71
    • /
    • 2020
  • Worldwide plant market keeps maintaining steady growth rate and along with this trend, domestic plant market and its contractors also maintain such growing tendency. However, in spite of its external growth, win-win growth of domestic material industry that occupies the biggest share in plant industry cost portion is extremely marginal in reality. Domestic plant material suppliers are required to increase awareness of domestic material brand by securing quality and reliability of international standard through improvement of design quality superior to that of overseas material suppliers. Improvement of design quality of plant material becomes an essential element, not an option, for survival of domestic plant industry and its suppliers. Under this background, in this study, priority and importance by each evaluation index was analyzed by materializing plant design stage through survey of experts and defining evaluation index by each design stage and based on this analysis result, evaluation index of stage-gate based decision-making process that may improve design quality of plant material was suggested. It is considered that by utilizing evaluation index of stage-gate based decision-making process being suggested in this study, effective and efficient decision-making of project decision-makers would be enabled and it would be contributory to improve design quality of plant material.

자유낙하식 구명정의 가속도 응답 추정을 위한 LS-DYNA 에서의 다중물질 ALE 와 단일물질 ALE의 비교 (Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat)

  • 배동명;자키
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.552-559
    • /
    • 2011
  • An interest in Arbitrary Lagrangian Eulerian (ALE) finite element methods has been increased due to more accurate responses in Fluid-Structure Interaction(FSI) problems. The multi-material ALE approach was applied to the prediction of the acceleration response of free-fall lifeboat, and its responses were compared to those of the single-material ALE one. It could be found that even though there was no big difference in the simulation responses of two methods, the single-material and multi-material ALE ones, the latter multi-material ALE method showed a little bit more close response to those of experimental results compared to the former single-material ALE one, especially in the x- and z-direction acceleration responses. Through this study, it could be found that several parameters in the ALE algorithms have to be examined more carefully for a good structural safety assessment of FSI problems.