• 제목/요약/키워드: Mat formation index

검색결과 3건 처리시간 0.014초

보류 시스템이 Floc 특성과 보류에 미치는 영향 (Effect of Retention System on the Characteristics of Floc and Retention)

  • 김용식;원종명
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.9-17
    • /
    • 2001
  • The floc characteristics of base paper stock for coating by the retention aid system consisting of polyacrylamide (high molecular weight low charge density, HMLC) and PEI without and with anionic inorganic oxide (IO) were investigated under various shear conditions of MDDA (modified dynamic drainage analyzer). The floc size was increased with cationic electrolytes dosage whatever inorganic oxide is applied or not. The effect of inorganic oxide on the floc size showed the different result between PAM and PEI. The smaller floc was obtained by PAM without inorganic oxide, but larger floc was obtained by PAM with inorganic oxide. However, the effect of shear force was not observed. Floc formation index was decreased by the addition of cationic electrolytes with or without inorganic oxide. Floc formation index had better correlation format formation index than floc size. The relationships between wet web permeability and mat air permeability showed the significant linear correlation ($R^2$=0.97~0.98) for HML PAM and PEI. Floc formation index gave more useful information than the retention measurement when the performance of retention aids is evaluated at the laboratory before applying at the paper mill.

  • PDF

증착 박막의 비젖음에 의한 실리카 표면 위 은나노 입자형성 (Formation of Silver Nanoparticles on Silica by Solid-State Dewetting of Deposited Film)

  • 김정환;조철민;황소리;김재호;오용준
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.856-860
    • /
    • 2010
  • Silver nanoparticles were formed on silica substrates through thin film dewetting at high temperature. The microstructural and morphological evolution of the particles were characterized as a function of processing variables such as initial film thickness, annealing time, and temperature. Silver thin films were deposited onto the silica using a pulsed laser deposition system and annealed in reducing atmosphere to induce agglomeration of the films. The film thicknesses before dewetting were in the range of 5 to 25 nm. A noticeable agglomeration occurs with annealing at temperatures higher than $300^{\circ}C$, and higher annealing temperature increases particle size uniformity for the same film thickness sample. Average particle size linearly correlates to the film thickness, but it does not strongly depend on annealing temperature and time, although threshold temperature for complete dewetting increases with an increase of film thickness. Lower annealing temperature develops faceted surface morphology of the silver particles by enhancing the growth of the low index crystal plane of the particles.

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H.;Tan, Chun-Yean;Yahya, Mohd Yazid;Wahit, Mat Uzir
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.105-117
    • /
    • 2022
  • Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.