• 제목/요약/키워드: Mastrovito Multiplication Method

검색결과 3건 처리시간 0.017초

공통인수 후처리 방식에 기반한 고속 유한체 곱셈기 (Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method)

  • 문상국
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1188-1193
    • /
    • 2004
  • 비도 높은 암호용으로 연구된 유한체 곱셈 연산기는 크게 직렬 유한체 곱셈기, 배열 유한체 곱셈기, 하이브리드 유한체 곱셈기으로 분류되어 왔다. 직렬 유한체 곱셈기는 마스트로비토 (Mastrovito) (1)에 의하여 제안되어 유한체 곱셈기의 가장 기본적인 구조로 자리잡아 왔고, 이를 병렬로 처리하기 위해 m 배의 자원을 투자하여 m 배의 속도를 얻어낸 결과가 2차원 배열 유한체 곱셈기이며 (2), 이들 기존 방식의 장점만을 취하여 제안된 방식이 1999년 Paar에 의해 제안된 하이브리드 (hybrid) 곱셈기이다 (3). 반면 이 하이브리드 곱셈기는 사용 가능한 유한체로서 유한체의 차수를 합성수로 사용해야 한다는 제약이 따른다. 본 논문에서는 마스트로비토의 곱셈기의 구조를 기본으로 하고, 수식적으로 공통인수를 끌어내어 후처리하는 기법을 유도하여 적용한다. 제안한 방식으로 설계한 새로운 유한체 곱셈기는 HDL로 구현하여 소프트웨어 측면 뿐 아니라 하드웨어 측면에서도 그 기능과 성능을 검증하였다. 제안된 방식에서 직렬 다항 기준식 (polynomial)을 t (t는 1보다 큰 양의 정수) 부분으로 나누어 적용하였을 경우 곱셈기는 t 배의 속도 향상을 보일 수 있다.

삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기 (Design of an Efficient Bit-Parallel Multiplier using Trinomials)

  • 정석원;이선옥;김창한
    • 정보보호학회논문지
    • /
    • 제13권5호
    • /
    • pp.179-187
    • /
    • 2003
  • 최근 빠른 하드웨어의 구현은 속도의 효율성을 중시하는 환경에서 큰 관심의 대상이 되고 있다. 유한체 연산기는 연산과정이 복잡한 곱셈 연산에 의해 속도가 결정된다. 연산 수행 속도를 빠르게 개선하기 위해 본 논문에서는 하드웨어 구조를 기존의 Mastrovito방법을 이용하여 제안하고자 한다. 삼항기약다항식(trinomial) p($\chi$)=$\chi$$^{m}$$\chi$$^n$+1를 이용하여 제안하는 곱셈기의 시간 복잡도를 기존의 복잡도 T$_{A}$+( (m-2)/(m-n) +1+ log$_2$(m) ) T$_{x}$에서 T$_{A}$+(1+ log$_2$(m-1)+ n/2 ) T$_{x}$으로 감소시킨다. 그러나 공간 복잡도를 살펴보면 AND 게이트 수가 기존의 복잡도와 m$^2$으로 같지만, XOR 게이트의 수는 기존 복잡도인 m$^2$-1에서 m$^2$+(n$^2$-3n)/2으로 기약다항식의 중간항 차수인 n에 따라 약간 증가된다. 기약다항식의 최고차 항을 표준에서 권장하는 차수와 그에 준하는 다항식의 차수에 대해 XOR 공간 복잡도가 평균적으로 1.18% 증가하는 데 비해, 시간 복잡도는 평균적으로 9.036% 정도 감소한다.

GF($q^n$)상의 병렬 승산기 설계를 위한 기약다항식에 관한 연구 (A Study on Irreducible Polynomial for Construction of Parallel Multiplier Over GF(q$^{n}$ ))

  • 오진영;김상완;황종학;박승용;김홍수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.741-744
    • /
    • 1999
  • In this paper, We represent a low complexity of parallel canonical basis multiplier for GF( q$^{n}$ ), ( q> 2). The Mastrovito multiplier is investigated and applied to multiplication in GF(q$^{n}$ ), GF(q$^{n}$ ) is different with GF(2$^{n}$ ), when MVL is applied to finite field. If q is larger than 2, inverse should be considered. Optimized irreducible polynomial can reduce number of operation. In this paper we describe a method for choosing optimized irreducible polynomial and modularizing recursive polynomial operation. A optimized irreducible polynomial is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(q$^{n}$ ) with low gate counts. and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF