• Title/Summary/Keyword: Mastrovito Multiplication Method

Search Result 3, Processing Time 0.01 seconds

Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method (공통인수 후처리 방식에 기반한 고속 유한체 곱셈기)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1188-1193
    • /
    • 2004
  • So far, there have been grossly 3 types of studies on GF(2m) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. Serial multiplication method was first suggested by Mastrovito (1), to be known as the basic CF(2m) multiplication architecture, and this method was adopted in the array multiplier (2), consuming m times as much resource in parallel to extract m times of speed. In 1999, Paar studied further to get the benefit of both architecture, presenting the hybrid multiplication architecture (3). However, the hybrid architecture has defect that only complex ordo. of finite field should be used. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software. The implemented GF(2m) multiplier shows t times as fast as the traditional one, if we modularized the numerical expression by t number of parts.

Design of an Efficient Bit-Parallel Multiplier using Trinomials (삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기)

  • 정석원;이선옥;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.179-187
    • /
    • 2003
  • Recently efficient implementation of finite field operation has received a lot of attention. Among the GF($2^m$) arithmetic operations, multiplication process is the most basic and a critical operation that determines speed-up hardware. We propose a hardware architecture using Mastrovito method to reduce processing time. Existing Mastrovito multipliers using the special generating trinomial p($\chi$)=$x^m$+$x^n$+1 require $m^2$-1 XOR gates and $m^2$ AND gates. The proposed multiplier needs $m^2$ AND gates and $m^2$+($n^2$-3n)/2 XOR gates that depend on the intermediate term xn. Time complexity of existing multipliers is $T_A$+( (m-2)/(m-n) +1+ log$_2$(m) ) $T_X$ and that of proposed method is $T_X$+(1+ log$_2$(m-1)+ n/2 ) )$T_X$. The proposed architecture is efficient for the extension degree m suggested as standards: SEC2, ANSI X9.63. In average, XOR space complexity is increased to 1.18% but time complexity is reduced 9.036%.

A Study on Irreducible Polynomial for Construction of Parallel Multiplier Over GF(q$^{n}$ ) (GF($q^n$)상의 병렬 승산기 설계를 위한 기약다항식에 관한 연구)

  • 오진영;김상완;황종학;박승용;김홍수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.741-744
    • /
    • 1999
  • In this paper, We represent a low complexity of parallel canonical basis multiplier for GF( q$^{n}$ ), ( q> 2). The Mastrovito multiplier is investigated and applied to multiplication in GF(q$^{n}$ ), GF(q$^{n}$ ) is different with GF(2$^{n}$ ), when MVL is applied to finite field. If q is larger than 2, inverse should be considered. Optimized irreducible polynomial can reduce number of operation. In this paper we describe a method for choosing optimized irreducible polynomial and modularizing recursive polynomial operation. A optimized irreducible polynomial is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(q$^{n}$ ) with low gate counts. and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF