• Title/Summary/Keyword: Master Batch

Search Result 39, Processing Time 0.024 seconds

Heat Treatment Effect on Anti-Tacking Properties of an Zn-stearate/TEA-stearate/Water Emulsion System

  • Qin, Pei;Lee, JinBae;Ha, KiRyong;Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.241-246
    • /
    • 2019
  • Carbon master batch (CMB) rubber sheets, which are stored in stacks, are difficult to separate during reuse because of the adhesion between sheets caused by the stacked weight over time. To solve this problem, in the actual rubber product manufacturing process, various anti-tacking agents (solid powder or liquid surfactants) are applied to the sheet surface. In this study, the emulsion samples of zinc (Zn)-stearate/triethanolamine (TEA)-stearate mixtures were prepared using TEA-stearate as a surfactant, prepared using an industrially manufactured Zn-stearate powder, and their basic anti-tacking properties were studied. During the process of manufacturing emulsion, a heat treatment process and an auxiliary surfactant were introduced to improve the dispersion stability. Results showed that the heat-treated sample exhibited a significant improvement in terms of sedimentation, storage stability, and anti-tacking characteristics since the Zn-stearate particles were reduced to a smaller size by the heat-treatment than that of the original Zn-stearate powder.

The Influence of Ammonium-Nitrogen on Anaerobic Microorganisms in Swine Wastewater by Batch-Fermentation. (혐기성 회분식 배양에서 양돈폐수의 NH$_4$-Nitrogen이 혐기성 미생물에 미치는 영향)

  • 김연옥
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.173-178
    • /
    • 1998
  • This study presents the influence of ammonium-nitrogen on microorganisms in swine wastewater. For the anaerobic batch fermentation, two different methods were used. One is the dilution of wastewater with water. The other method is the elimination of ammonium-nitrogen from the wastewater. By addition of MgO into wastewater, non-soluble crystall was formed under alkaline condition as MgNH$_4$PO$_4$6$H_2O$ (MAP). The master culture was adapted in swine wastewater for more than 3 months, in water-dilution method, the dilution of wastewater with 25% water gave us the best result in efficiency of COD removal. Two hundred hours later MAP-treated wastewater showed the efficiency of the COD removal more than 80%. Under same condition obtained none MAP-treated wastewater about 50%. MAP treatment carried out the very effective anaerobic digestion with swine wastewater. The important result in this study is that the low ratio of C:N influenced on anaerobic microorganisms more than high concentration of ammonium nitrogen in swine wastewater. The struvite for the crystallforming has no toxic effect on methanogenic bacteria.

  • PDF

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Synthesis of Silver Nano-Particles using Alcohol Reducing Process and Antibacterial Properties of its Ag/PET Master Batch (알코올환원법을 이용한 은나노입자 제조 및 이를 함유한 Ag/PET 마스터배치칩의 항균특성에 관한 연구)

  • Son, Eun-Jong;Hwang, Young-Gu;Shin, Yu-Shik;Jung, Gi-Hoon;Jung, Hae-Rim;Jeong, Sung-Hoon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.56-56
    • /
    • 2011
  • 알코올 환원법(alcohol reducing process)은 화학적 환원제가 필요하지 않은 화학합성법으로 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올 등 C1-C4의 알코올류, 에틸렌 글라이콜, 디에틸렌 글라이콜, 프로필렌 글라이콜과 같은 글리콜류 등이 용매이자 환원제로써 사용된다. 전형적으로 금속 전구체를 상기의 알코올류나 글리콜류에 용해 또는 분산시킨 후 그 용액을 환류 조건하에서 가열하게 되면 금속 이온과 용매간의 산화, 환원반응에 의하여 금속이온이 금속원자로 환원되며, 환원된 금속 입자들은 핵 행성과 성장 과정을 거쳐서 입자를 형성하게 된다. 본 연구에서는 알코올환원법을 이용하여 나노크기의 은입자제조를 시도하였고, 이를 PET 칩과의 마스터배치 제조을 시도하였으며, 이의 항균성능을 연구 고찰하였다. 30 ~ 80 nm의 은파우더를 제조할 수 있었으며, 우수한 항균성능을 갖는 Ag/PET 마스터배치를 제조할 수 있었다. 이를 활용하여 나노은입자기반의 항균섬유을 제조하여 이를 활용한 기모경편성물 제조의 기초데이타로 활용이 가능하리라고 사료된다.

  • PDF

The Spinnability of Ag/PET Master Batch containing Silver Nano Particles according to Changing of Intrinsic Viscosity (은나노입자 함유 M/B의 고유점도(IV)변화에 따른 제사성 및 가연성에 관한 연구)

  • Son, Eun-Jong;Kim, Hyun-Sun;Choi, Tae-Soo;Jeong, Sung-Hoon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.54-54
    • /
    • 2011
  • 방사 공정 최적화를 위해 칩(chip)건조를 실시하여 칩의 수분을 모두 제거한 후 실험을 진행하게 된다. 칩은 그 자체가 공정수분율(0.4%) 또는 그 이상의 수분을 함유하고 있으므로 건조하지 않고 방사하면 현저히 가수분해가 일어난다. 가수분해가 일어난다면 PET 분자량도 저하되어 고분자의 성질을 잃게 되어 방사된 섬유의 물리 화학적 성질에 중요한 영향을 받게 된다. 그러므로 가수분해를 방지하기 위하여 칩내 수분을 제거하는 건조 공정을 거치는 것이다. 개발된 나노은입자을 함유한 Ag/PET 마스터배치의 제사성 및 가연성 평가을 위한 파일럿연구를 행했다. 본 연구에서 사용한 은나노 M/B 칩(chip)의 경우 일반적으로 사용하는 PET 칩에 비하여 낮은 고유점도를 가지므로 방사성에 칩의 수분이 더욱 영향을 미칠 것이라 판단되어 건조공정에 특별한 주의을 하여 진행하였다. 마스터배치의 고유점도(IV)값의 변화에 따른 제사성 및 가연성 평가를 관찰하였다. #3 M/B 칩의 제사성이 #1 M/B 칩 대비 공정성이 개선되어 두 품종 모두 비출사가 발생하지 않았으며, M/B 제조시 분산제 유무에 따른 방사공정성의 차이는 없는 것으로 보인다. 따라서 #1 M/B 대비 공정성이 개선된 점은 M/B의 IV개선에 기인하는 것으로 판단되었다.

  • PDF

The Commercialization & Optimization of its Production Process in Warp-Knitted Fabric containing Silver Nano-Particles through Textile Stream Project (섬유스트림사업을 통한 은나노입자함유 경편파일편성물의 생산공정 확립 및 상품화 전개에 관한 연구)

  • Shin, Yu-Shik;Son, Eun-Jong;Jung, Gi-Hoon;Jung, Hae-Rim;Hwang, Young-Gu;Jeong, Sung-Hoon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.86-86
    • /
    • 2011
  • 나노소재기술은 기존 소재로는 얻을 수 없는 새로운 기능 및 특성을 나타낼 수 있어 산업전반에 적용할 수 있는 최첨단집적기술이다. 그러나 나노입자를 섬유에 첨가하여 기능성 섬유를 생산하는 경우 응집이 발생하는 등의 다양한 문제점이 발생하는데 이를 극복하기 위해서는 사이즈 분포를 제어하는 기술, 표면처리를 통해 분산성을 향상시키는 기술, 나노입자와 섬유와의 상용성을 개선하는 기술 등이 해결되어야 한다. 본 연구에서는 고기능성 및 고부가가치 경편파일 니트 원단을 개발하기 위해 은(Silver) 나노입자가 균일하게 분산된 M/B(Master Batch)를 제조하였으며, 이를 PET와의 용융 혼합 방사함으로써 0.5denier(75D/144F)급 원사에 99.9%의 영구적인 항균/소취 기능을 부여하였다. 또한 개발된 극세사를 이용하여 다양한 경편파일 원단을 설계하고, 기모, 염색 및 날염 등의 공정을 거쳐 나노기술융합형 화학섬유소재를 이용한 기능성 침장 제품을 개발하였다.

  • PDF

Genetic Stability of the Integrated Structural Gene of Guamerin in Recombinant Pichia pastoris

  • Lim, Hyung-Kwon;Kim, Kyeong-Yeon;Lee, Kong-Ju;Park, Doo-Hong;Chung, Soo-Il;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.470-475
    • /
    • 2000
  • Genetic chracterstics of the structural gene of guamerin (a novel elastase inhibitor from Korean leech), integrated into the HIS4 locus of chromosomal DNA of Pichia pastoris along with the $\alpha$-factor leader sequence, were investigated. In the selected clone from candidates, two copies of the integration cassette including the structural gene copies of the integration cassette including the structural gene of guamerin were found in the integration site of the chromosomal DNA of P.pastoris. It was demonstrated that the integrated structural gene of guamerin was stable up to about 70 generations in the relay flask culture. Then, a high-cell-density culture could be fulfilled easily by DO-stat fed-batch culture, in which the cell growth and the recombinant guamerin production reached about 250 of OD600nm and 260 mg/l, respectively. Finally, it was revealed that the DNA sequence of the integrated structural gene of guamerin in P. pastoris was maintained correctly in the end of production cells of relay flask culture and high-cell-density culture.

  • PDF

Influence of Process Oil Content on Properties of Silica-SBR Rubber Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.184-190
    • /
    • 2020
  • In the wet master batch process, process oil is used to improve the workability of silica-SBR. The process oil expands the polymer and provides lubrication to soften the stiff rubber chain. However, addition of excess process oil can interfere in the crosslinking reaction between rubber molecules and reduce the crosslinking density of silica-SBR. Controlling the amount of process oil is an important aspect for properly controlling the workability and crosslinking density of silica-SBR. In this study, silica-SBR was prepared by adjusting the amount of process oil to confirm its effect on silicaSBR. Vulcanization characteristics of silica-SBR were examined using a moving die rheometer. Dynamic viscoelasticity was measured using a dynamic mechanical thermal analyzer, and the mechanical properties were investigated using the universal testing machine according to ASTM D412. As a result, all silica-SBR compounds with 10 to 40 phr of process oil have effects of improving the processability and the silica dispersibility. Also, the optimum condition was determined when 10 phr of processed oil was added because the abrasion resistance was improved 65% compared to that at 40 phr.

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2020
  • Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Preparation of Silver/Polystyrene Nanocomposites by Radical Polymerization Using Silver Carbamate Complex (은 카바메이트 복합체를 이용한 라디칼 중합에 의한 은/폴리스티렌 나노복합체의 제조)

  • Park, Heon-Su;Park, Hyung-Seok;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.144-149
    • /
    • 2010
  • Ag/polystyrene(PS) nanocomposites were prepared by in situ reduction of silver 2-ethylhexylcarbamate (Ag-CB) complex and follwing radical polymerization only by heating at 110 $^{\circ}C$. In contrast to this conventional heating method, the microwave irradiation afforded well-dispersed silver nanoparticles(NPs) in styrene monomer without polymerization. The synthesis of Ag NPs proceeded uniformly throughout the reaction vessel only under microwave irradiation, completing the reaction simultaneously in the whole reaction solution. Successive polymerization of the monomer containing the resultant NPs has successfully produced a hybrid of the silver NPs dispersed in PS matrix. Ag/PS (0.1/100) nanocomposites were prepared successfully by melt-mixing process using Ag/PS(4.0/100) as a master-batch. UV-VIS spectroscopy, TEM, and X-ray diffraction techniques were used to investigate the process of formation of Ag/PS nanocomposites.