• Title/Summary/Keyword: Massive IoT

Search Result 51, Processing Time 0.025 seconds

A Study on the Establishment of Massive IoT based on Low Power Wide Area Network Technology (저전력 광역 네트워크 기술 기반 Massive IoT 구축 연구)

  • Lee, Gyeongheon;Hong, Jiyeon;Youn, Joosang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.103-104
    • /
    • 2019
  • 최근 스마트시티 구축 사업에서 사물인터넷 기반 서비스 개발이 활발히 진행 중이다. 그 서비스들을 제공하기 위해 사용되어야 할 디바이스 수가 수백만 개까지 증가할 것으로 예상하고 있으며 수백만 개의 디바이스들을 수용하기 위해서는 Massive IoT 네트워크의 환경 구축을 필요로 하고 있다. 따라서 본 논문에서는 Massive IoT 네트워크 환경을 구축하기 위해 저전력 광역 네트워크(LPWAN) 기술 중 LoRa(Long Range) 네트워크가 적용이 가능한지를 LoRaSim을 이용하여 시뮬레이션한다. 시뮬레이션한 결과 중 충돌 횟수를 통해 충동률을 구하고 그래프를 이용하여 신뢰성을 나타내며, Massive IoT 네트워크에 적합성에 대해 분석한다.

  • PDF

A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart city Environments

  • Donghyun Kim;Jiho Shin;Jung Taek Seo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 2023
  • A smart city is a massive internet of things (IoT) environment, where all terminal devices are connected to a network to create and share information. In accordance with massive IoT environments, millions of IoT devices are connected, and countless data are generated in real time. However, since heterogeneous IoT devices are used, collecting the logs for each IoT device is difficult. Due to these issues, when an IoT device is invaded or is engaged in malicious behavior, such as infection with malware, it is difficult to respond quickly, and additional damage may occur due to information leakage or stopping the IoT device. To solve this problem, in this paper, we propose identifying the attack technique used for initial access to IoT devices through MITRE ATT&CK, collect the logs that can be generated from the identified attack technique, and use them to identify the cause of malware infection.

Design and Evaluation of a Quorum-Based Adaptive Dissemination Algorithm for Critical Data in IoTs (IoT에서 중요한 데이터를 위한 쿼럼 기반 적응적 전파 알고리즘의 설계 및 평가)

  • Bae, Ihn Han;Noh, Heung Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.913-922
    • /
    • 2019
  • The Internet of Things (IoT) envisions smart objects collecting and sharing data at a massive scale via the Internet. One challenging issue is how to disseminate data to relevant data consuming objects efficiently. In such a massive IoT network, Mission critical data dissemination imposes constraints on the message transfer delay between objects. Due to the low power and communication range of IoT objects, data is relayed over multi-hops before arriving at the destination. In this paper, we propose a quorum-based adaptive dissemination algorithm (QADA) for the critical data in the monitoring-based applications of massive IoTs. To design QADA, we first design a new stepped-triangular grid structures (sT-grid) that support data dissemination, then construct a triangular grid overlay in the fog layer on the lower IoT layer and propose the data dissemination algorithm of the publish/subscribe model that adaptively uses triangle grid (T-grid) and sT-grid quorums depending on the mission critical in the overlay constructed to disseminate the critical data, and evaluate its performance as an analytical model.

Coverage Class Adaptation Schemes Considering Device Characteristics in a 3GPP Narrowband IoT System (3GPP 협대역 사물인터넷 시스템에서 단말의 특징을 고려한 커버리지 클래스 적응 기법)

  • Nam, Yujin;So, Jaewoo;Na, Minsoo;Choi, Changsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1026-1037
    • /
    • 2016
  • 3rd Generation Partnership Project (3GPP) is the progressing standardization of the narrowband IoT (NB-IoT) system to support massive devices for the Internet of Things (IoT) services. The NB-IoT system uses a coverage class technique to increase the performance of the NB-IoT system while serving massive devices in very wide coverage area. A moving device can change the coverage class according to the distance or the channel state between the base station and the moving device. However, in the conventional NB-IoT standard, the performance of the NB-IoT system degrades because the coverage class is changed based on the fixed criterion. This paper proposes the coverage class adaptation schemes to increase the performance of the NB-IoT system by dynamically change the coverage class according to the location or the channel state of the device. Simulation results show that the proposed coverage class adaptation scheme decreases both the signaling overhead and the PDCCH decoding error rate in comparison with the conventional coverage class adaptation scheme in the 3GPP standard.

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

Active-Passive Ranging Method for Effective Positioning in Massive IoT Environment (대규모 IoT 환경에서의 효과적 측위를 위한 능동적-수동적 거리 추정 기법)

  • Byungsun Hwang;Seongwoo Lee;Kyoung-Hun Kim;Young-Ghyu Sun;Jin-Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2024
  • With the advancement and proliferation of the Internet of Things (IoT), a wide range of location-based services are being offered, and various ranging methods are being researched to meet the objectives of the required services. Conventional ranging methods involve the direct exchange of signals between tags and anchors to estimate distance, presenting a limitation in efficiently utilizing communication resources in large-scale IoT environments. To overcome these limitations, active-passive ranging methods have been proposed. However, there is a lack of theoretical convergence guarantees against clock drift errors and a detailed analysis of the characteristics of ranging estimation techniques, making it challenging to derive precise positioning results. In this paper, an improved active-passive ranging method that accounts for clock drift errors is proposed for precise positioning in large-scale IoT environments. The simulation results confirmed that the proposed active-passive ranging method can enhance distance estimation performance by up to 94.4% and 14.4%, respectively, compared to the existing active-passive ranging methods.

Trends of 5G Massive loT (5G Massive loT 기술 및 표준화 동향)

  • Park, O.S.;Hwang, H.Y.;Lee, C.H.;Shin, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.31 no.1
    • /
    • pp.68-77
    • /
    • 2016
  • 최근 들어 5G 이동통신 시스템을 위한 표준화 및 기술개발이 본격화되고 있으며, 기존 이동통신 시스템과 차별화되는 5G 이동통신 시스템의 대표적인 목표 중 하나는 사람이 휴대하는 단말기뿐만 아니라 생활 속 모든 사물을 네트워크에 연결하여 정보를 생성하고 공유하는 초연결 네트워크(Internet of Things: IoT) 구축이다. 시장 조사기관이나 다수의 전문가들은 2020년경에는 전 세계적으로 약 500억개의 디바이스가 네트워크에 연결되는 등 사물 디바이스의 폭발적 증가를 예상하며, 이를 통한 부가가치 창출과 시장이 급격히 성장할 것으로 전망하고 있다. 본고에서는 초다수의 사물 디바이스 수용을 위한 5G massive IoT 기술동향 및 이와 관련하여 현재 진행되는 3GPP 표준화 동향에 대해 기술한다.

  • PDF

Comprehensive Survey on Internet of Things, Architecture, Security Aspects, Applications, Related Technologies, Economic Perspective, and Future Directions

  • Gafurov, Khusanbek;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.797-819
    • /
    • 2019
  • Internet of Things (IoT) is the paradigm of network of Internet-connected things as objects that constantly sense the physical world and share the data for further processing. At the core of IoT lies the early technology of radio frequency identification (RFID), which provides accurate location tracking of real-world objects. With its small size and convenience, RFID tags can be attached to everyday items such as books, clothes, furniture and the like as well as to animals, plants, and even humans. This phenomenon is the beginning of new applications and services for the industry and consumer market. IoT is regarded as a fourth industrial revolution because of its massive coverage of services around the world from smart homes to artificial intelligence-enabled smart driving cars, Internet-enabled medical equipment, etc. It is estimated that there will be several dozens of billions of IoT devices ready and operating until 2020 around the world. Despite the growing statistics, however, IoT has security vulnerabilities that must be addressed appropriately to avoid causing damage in the future. As such, we mention some fields of study as a future topic at the end of the survey. Consequently, in this comprehensive survey of IoT, we will cover the architecture of IoT with various layered models, security characteristics, potential applications, and related supporting technologies of IoT such as 5G, MEC, cloud, WSN, etc., including the economic perspective of IoT and its future directions.

SRS: Social Correlation Group based Recommender System for Social IoT Environment

  • Kang, Deok-Hee;Choi, Hoan-Suk;Choi, Sang-Gyu;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, the Social Internet of Things (IoT), the follow-up of the IoT, has been studied to expand the existing IoT services, by integrating devices into the social network of people. In the Social IoT environment, humans, devices and digital contents are connected with social relationships, to guarantee the network navigability and establish levels of trustworthiness. However, this environment handles massive data, including social data of humans (e.g., profile, interest and relationship), profiles of IoT devices, and digital contents. Hence, users and service providers in the Social IoT are exposed to arbitrary data when searching for specific information. A study about the recommender system for the Social IoT environment is therefore needed, to provide the required information only. In this paper, we propose the Social correlation group based Recommender System (SRS). The SRS generates a target group, depending on the social correlation of the service requirement. To generate the target group, we have designed an architecture, and proposed a procedure of the SRS based on features of social interest similarity and principles of the Collaborative Filtering and the Content-based Recommender System. With simulation results of the target scenario, we present the possibility of the SRS to be adapted to various Social IoT services.

An Adaptive Traffic Interference Control System for Wireless Home IoT services (무선 홈 IoT 서비스를 위한 적응형 트래픽 간섭제어 시스템)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.259-266
    • /
    • 2017
  • The massive traffic interferences in the wireless home IoT provides the reason for packet losses, and it degrades the QoS (Quality of Service) and throughput on the home network. This paper propose a new adaptive traffic interference control system, ATICS, for enhancing QoS and throughput for IoT services as detecting a traffic process and non-traffic process in the wireless home network. The proposed system control the traffic interferences as distinguishing the short-term traffic process and long-term traffic process by traffic characteristics in wireless home networks. The simulation results shows that the proposed scheme have more efficient traffic control performance than the other schemes.