• 제목/요약/키워드: Massive Connectivity

검색결과 22건 처리시간 0.022초

Study on the Characteristics of the Korea Internet AS-Level Topology Using Node Degree and Node Connectivity Metrics

  • 오동익;이강원
    • 한국통신학회논문지
    • /
    • 제38B권6호
    • /
    • pp.417-426
    • /
    • 2013
  • The Korea Internet AS-level topology was constructed using three data sources: Border Gateway Protocol (BGP) trace collector, Internet Routing Registry (IRR), and Internet Exchange Point (IXP). It has 685 nodes and 1,428 links. The Korea Internet AS-level topology is a small regional subgraph of the massive global one. We investigate how well the Korea Internet preserves the topological characteristics of the global one or how different they are. We carefully select several topology metrics that can analyze the characteristics of the Korea Internet AS-level topology. We also investigate how well Internet topology generators can represent the characteristics of the Korea Internet AS-level topology.

An Efficient Markov Chain Based Channel Model for 6G Enabled Massive Internet of Things

  • Yang, Wei;Jing, Xiaojun;Huang, Hai;Zhu, Chunsheng;Jiang, Qiaojie;Xie, Dongliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4203-4223
    • /
    • 2021
  • Accelerated by the Internet of Things (IoT), the need for further technical innovations and developments within wireless communications beyond the fifth generation (B5G) networks is up-and-coming in the past few years. High altitude platform station (HAPS) communication is expected to achieve such high levels that, with high data transfer rates and low latency, millions of devices and applications can work seamlessly. The HAPS has emerged as an indispensable component of next-generations of wireless networks, which will therefore play an important role in promoting massive IoT interconnectivity with 6G. The performance of communication and key technology mainly depend on the characteristic of channel, thus we propose an efficient Markov chain based channel model, then analyze the HAPS communication system's uplink capability and swing effect through experiments. According to the simulation results, the efficacy of the proposed scheme is proven to meet the requirements of ubiquitous connectivity in future IoT enabled by 6G.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

AI 기반 이동통신 물리계층 기술 동향과 전망 (Physical-Layer Technology Trend and Prospect for AI-based Mobile Communication)

  • 장갑석;고영조;김일규
    • 전자통신동향분석
    • /
    • 제35권5호
    • /
    • pp.14-29
    • /
    • 2020
  • The 6G mobile communication system will become a backbone infrastructure around 2030 for the future digital world by providing distinctive services such as five-sense holograms, ultra-high reliability/low-latency, ultra-high-precision positioning, ultra-massive connectivity, and gigabit-per-second data rate for aerial and maritime terminals. The recent remarkable advances in machine learning (ML) technology have recognized its efficiency in wireless networking fields such as resource management and cell-configuration optimization. Further innovation in ML is expected to play an important role in solving new problems arising from 6G network management and service delivery. In contrast, an approach to apply ML to a physical-layer (PHY) target tackles the basic problems in radio links, such as overcoming signal distortion and interference. This paper reviews the methodologies of ML-based PHY, relevant industrial trends, and candiate technologies, including future research directions and standardization impacts.

차세대 사이버 보안 동향 (The Trends of Next Generation Cyber Security)

  • Lee, Daesung
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1478-1481
    • /
    • 2019
  • As core technologies(IoT, 5G, Cloud, Bigdata, AI etc) leading the Fourth Industrial Revolution promote smart convergence across the national socio-economic infrastructure, the threat of new forms of cyber attacks is increasing and the possibility of massive damage is also increasing. Reflecting this trend, cyber security is expanding from simple information protection to CPS(Cyber Physical System) protection that combines safety and security that implements hyper-connectivity and ultra-reliability. This study introduces the recent evolution of cyber attacks and looks at the next generation cyber security technologies based on the conceptual changes of cyber security technologies such as SOAR(Security Orchestration, Automation and Response) and Zero Trust.

Unipodal 2PAM NOMA without SIC: toward Super Ultra-Low Latency 6G

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권1호
    • /
    • pp.69-81
    • /
    • 2021
  • While the fifth generation (5G) and beyond 5G (B5G) mobile communication networks are being rolled over the globe, several world-wide companies have already started to prepare the sixth generation (6G). Such 6G mobile networks targets ultra-reliable low-latency communication (URLLC). In this paper, we challenge to reduce the inherent latency of existing non-orthogonal multiple access (NOMA) in 5G networks of massive connectivity. First, we propose the novel unipodal binary pulse amplitude modulation (2PAM) NOMA, especially without SIC, which greatly reduce the latency in existing NOMA. Then, the achievable data rates for the unipodal 2PAM NOMA are derived. It is shown that for unequal gain channels, the sum rate of the unipodal 2PAM NOMA is comparable to that of the standard 2PAM NOMA, whereas for equal gain channels, the sum rate of the unipodal 2PAM NOMA is superior to that of the standard 2PAM NOMA. In result, the unipodal 2PAM could be a promising modulation scheme for NOMA systems toward 6G.

대규모 디바이스의 자율제어를 위한 EdgeCPS 기술 동향 (EdgeCPS Technology Trend for Massive Autonomous Things)

  • 전인걸;강성주;나갑주
    • 전자통신동향분석
    • /
    • 제37권1호
    • /
    • pp.32-41
    • /
    • 2022
  • With the development of computing technology, the convergence of ICT with existing traditional industries is being attempted. In particular, with the recent advent of 5G, connectivity with numerous AuT (autonomous Things) in the real world as well as simple mobile terminals has increased. As more devices are deployed in the real world, the need for technology for devices to learn and act autonomously to communicate with humans has begun to emerge. This article introduces "Device to the Edge," a new computing paradigm that enables various devices in smart spaces (e.g., factories, metaverse, shipyards, and city centers) to perform ultra-reliable, low-latency and high-speed processing regardless of the limitations of capability and performance. The proposed technology, referred to as EdgeCPS, can link devices to augmented virtual resources of edge servers to support complex artificial intelligence tasks and ultra-proximity services from low-specification/low-resource devices to high-performance devices.

Performance Analysis on Strongest Channel Gain User for Intelligent Reflecting Surface NOMA

  • Kyuhyuk Chung
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, fifth generation (5G) networks are being deployed in phases all over the world, the paradigm has shifted to developing the next generation wireless technologies, which have grown exponentially in last few decades, wireless networks are promising for the demand to enormous connections. Non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) are considered as the key technoloies for next-generation beyond 5G (B5G) and sixth generation (6G) networks, in which IRS can play an important advance in the wireless propagation environment, and NOMA can effectively increase massive connectivity to improve user fairness. In this paper, we analyze a performance on the strongest channel user in terms of achievable data rates numerically. Then, with the achievable data rates, the signal-to-noise ratio (SNR) gain is calculated for the IRS-NOMA network over the conventional NOMA network. As a consequence, IRS-NOMA schemes have been considered as some key technologies.

An Efficient E-learning and Internet Service Provision for Rural Areas Using High-Altitude Platforms during COVID-19 Pan-Demic

  • Sameer Alsharif;Rashid A. Saeed;Yasser Albagory
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.71-82
    • /
    • 2024
  • This paper proposes a new communication system for e-learning applications to mitigate the negative impacts of COVID-19 where the online massive demands impact the current commu-nications systems infrastructures and capabilities. The proposed system utilizes high-altitude platforms (HAPs) for fast and efficient connectivity provision to bridge the communication in-frastructure gap in the current pandemic. The system model is investigated, and its performance is analyzed using adaptive antenna arrays to achieve high quality and high transmission data rates at the student premises. In addition, the single beam and multibeam HAP radio coverage scenarios are examined using tapered uniform concentric circular arrays to achieve feasible communication link requirements.