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Abstract 

 Recently, fifth generation (5G) networks are being deployed in phases all over the world, the paradigm 
has shifted to developing the next generation wireless technologies, which have grown exponentially in last 
few decades, wireless networks are promising for the demand to enormous connections. Non-orthogonal 
multiple access (NOMA) and intelligent reflecting surface (IRS) are considered as the key technoloies for next-
generation beyond 5G (B5G) and sixth generation (6G) networks, in which IRS can play an important advance 
in the wireless propagation environment, and NOMA can effectively increase massive connectivity to improve 
user fairness. In this paper, we analyze a performance on the strongest channel user in terms of achievable 
data rates numerically. Then, with the achievable data rates, the signal-to-noise ratio (SNR) gain is calculated 
for the IRS-NOMA network over the conventional NOMA network. As a consequence, IRS-NOMA schemes 
have been considered as some key technologies.    
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1. Introduction  

Owing to the demand of mass connectivity and spectrum efficiency, promising technologies have been 
required the fifth-generation (5G) communications [1]. one of the technologies in 5G is considered as non-
orthogonal multiple access (NOMA) [2-4]. However, the sixth-generation (6G) communications have request 
higher data rates than 5G network [5]. For this end, intelligent reflecting surface (IRS) have been conceded as 
an efficient technology [6-8]. In NOMA, the bit-error rate (BER) of a weaker channel user has been calculated 
[9]. For the capacity of IRS transmissions, a tight upper bound was investigated [10].  

In this paper, we analyze a performance on the strongest channel user in terms of achievable data rates 
numerically. First, we compare the achievable data rates of NOMA system to that of IRS-NOMA system, to 
analyze numerically the gain of the IRS-NOMA system with respect to the NOMA system in terms of 
achievable data rates as the number of reflecting devices increases. Then, with the achievable data rates, the 
SNR gain is calculated for the IRS-NOMA network over the conventional NOMA network. 
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State-of-the-art advances in IRS-NOMA include studies of hybrid automatic repeat request (HARQ) 

technique for IRS-NOMA [11], simultaneously transmitting assisted IRS-NOMA [12], and ergodic rate 
analysis and phase design of IRS-NOMA [13]. In addition, covert communication is investigated in IRS-
NOMA [14] and a rate-splitting (RS) scheme is proposed for IRS-NOMA [15]. 

This paper is organized as follows. The system and channel model are described, in Section 2. Achievable 
data rates of NOMA system and IRS-NOMA system are introduced in Section 3. In Section 4, the numerical 
results are presented. In Section 5, finally, the conclusions are given. 

The main contributions are summarized as follows: 
 

• We analyze a performance on the strongest channel user in terms of achievable data rates 
numerically. 

• Then, we compare the achievable data rates of NOMA system to that of IRS-NOMA system, to 
analyze numerically the gain of the IRS-NOMA system with respect to the NOMA system in terms 
of achievable data rates as the number of reflecting devices increases.  

• Moreover, with the achievable data rates, the SNR gain is calculated for the IRS-NOMA network 
over the conventional NOMA network.  

 

2. System and Channel Model 
We investigate an IRS-NOMA system from a base station to two users, who are a stronger channel user and 

a cell-edge user. A direct link between the base station and the near user, which is the flat-fading channel, 
denoted by 1,dh . The base station transmits the superimposed signal: 
 

  1 21 ,x P s P s     (1) 
 

where the total transmitted power is P , ms  is the signal with the unit power for the mth user, 1, 2m  , and 
  denotes the power allocation coefficient. 1r  received by the near user is expressed by 
 

 1 1 1,r h x n   (2) 
 
where 1 1, h ΘhT

d br ruh h   and 1 0~ (0, / 2)n N N  is additive white Gaussian noise (AWGN). hbr  is the 

1N  flat-fading channel from the base station to the IRS and hru  is the 1N  flat-fading channel from the 

IRS to the near user, where a given number N  of reflecting devices. The IRS is expressed by the diagonal 
matrix  
 

  1diag , , ,Njje e    (3) 
 

where the fixed amplitude reflection coefficient is (0,1]   and the phase-shift variables are 1, , N 
 

optimized by the IRS.   
 
3. Achievable Data Rates of NOMA system and IRS-NOMA system 
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In this section, we summarize achievable data rates of NOMA system and IRS-NOMA system for the 
strongest channel gain user.  

First, the achievable data rates of NOMA system for the strongest channel gain user, which is used for 
simulations, is defined as follows:   
 

 
2

1,(NOMA)
21 2log 1 ,dh Pα

R
σ

       
 (4) 

 
where (NOMA)

1R  is obtained after successive interference cancellation (SIC) is performed and the user-2 signal 
is removed.     

second, the achievable data rates of IRS-NOMA system for the strongest channel gain user, which is also 
used for simulations, is given as follows:   
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where AS(IR NOM )

1R   is given by adding the channel gain of a direct link between the base station and the near 
user to the channel gain of IRS.  

The maximum channel gain    1 1,max
1
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    can be expressed when the IRS selects the 

phase-shifts to maximize the channel gain, as follows:      
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where the effective channel gain 1 effh  is given by  
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Notably, the effective channel gain 1 effh  represents the channel gain by IRS, which increases as the number 

of reflecting devices increases. 
 
4. Numerical Results and Discussions 
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In this section, we compare the achievable data rate of NOMA system with IRS-NOMA system numerically. 

For this, it is assumed that 1  , 1, 0.2dh  ,  h 0.3br n   and  h 0.5ru n  . Also we assume 0 100N  .   

First, we depict the achievable data rates of NOMA system and IRS-NOMA system, in Figure 1, to analyze 
numerically the gain of the IRS-NOMA system with respect to the NOMA system in terms of achievable data 
rates as the number of reflecting devices increases.    

            

   

Figure 1. Comparison of achievable data rates of NOMA system and IRS-NOMA system 
versus the number of reflecting devices for the strongest channel user  

 
As shown in Figure 1, the achievable data rate of the IRS-NOMA system increases, as the number of devices 
increases. However, the achievable data rate of the NOMA system remains constant because there is no 
channel link from the IRS. In addition, it is observed that the slope of the achievable data rate of the IRS-
NOMA system decreases after the number of devices is 60N  .       

Second, in Figure 2, with 0.2 , to analyze the signal to noise ratio (SNR) power gain, we show the 
achievable data rates of the NOMA system and the IRS-NOMA system versus the SNR, 20 / 20P    (dB). 
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Figure 2. Comparison of achievable data rates of NOMA system and IRS-NOMA system for 
the strongest channel user 

 
At the achievable data rate of 4R  , the achievable data rate for the IRS-NOMA system becomes larger by 
about 6 dB than that of the NOMA system, as shown in Figure 2. Notably, the SNR gains of the achievable 
data rate for the IRS-NOMA system over the NOMA system increase about up to SNR power 2/ 20P    
(dB).   

   
5. Conclusion  

In this paper, we analyzed a performance on the strongest channel user in terms of achievable data rates 
numerically. First, we compared the achievable data rates of NOMA system to that of IRS-NOMA system, to 
analyze numerically the gain of the IRS-NOMA system with respect to the NOMA system in terms of 
achievable data rates as the number of reflecting devices increases. Then, with the achievable data rates, the SNR 
gain was calculated for the IRS-NOMA network over the conventional NOMA network. Moreover, to analyze 
the SNR gain, we showed the achievable data rates of the NOMA system and the IRS-NOMA system versus 
the SNR, 20 / 20P    (dB). At the achievable data rate of 4R  , the achievable data rate for the IRS-
NOMA system became larger by about 6 dB than that of the NOMA system. As a consequence, IRS-NOMA 
schemes have been considered as some key technologies, for next-generation B5G and sixth 6G networks, in 
which especially, IRS can play an important advance in the wireless propagation environment. 
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