• Title/Summary/Keyword: Massive

Search Result 3,726, Processing Time 0.036 seconds

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.433-436
    • /
    • 2013
  • Massive MIMO communication system with huge antennas has been attracting intensive attention as one of key technologies to increase the spectral efficiency. Many previous studies investigated single user Massive MIMO scheme in cellular downlink. Recently, however, intensive researches on multiuser-based Massive MIMO are performed to overcome the problem caused by the limited number of antennas in mobile stations. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states, where the number of selected antennas corresponds to the number of baseband and RF elements in base station. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems. Our simulation results indicate that the proposed antenna selection scheme can achieve comparable performance to the conventional scheme without antenna selection.

  • PDF

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.

Energy Efficiency of Distributed Massive MIMO Systems

  • He, Chunlong;Yin, Jiajia;He, Yejun;Huang, Min;Zhao, Bo
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.649-657
    • /
    • 2016
  • In this paper, we investigate energy efficiency (EE) of the traditional co-located and the distributed massive multiple-input multiple-output (MIMO) systems. First, we derive an approximate EE expression for both the idealistic and the realistic power consumption models. Then an optimal energy-efficient remote access unit (RAU) selection algorithm based on the distance between the mobile stations (MSs) and the RAUs are developed to maximize the EE for the downlink distributed massive MIMO systems under the realistic power consumption model. Numerical results show that the EE of the distributed massive MIMO systems is larger than the co-located massive MIMO systems under both the idealistic and realistic power consumption models, and the optimal EE can be obtained by the developed energy-efficient RAU selection algorithm.

Antenna Selection Scheme for BD Beamforming-based Multiuser Massive MIMO Communication Systems (BD 빔포밍을 이용한 다중 사용자 기반 거대 안테나 통신 시스템용 안테나 선택 기법)

  • Ban, Tae-Won;Jung, Bang Chul;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1286-1291
    • /
    • 2013
  • Intensive researches on multiuser-based Massive MIMO are performed to increase the spectral efficiency. Although the Massive MIMO scheme based on huge number of antennas inevitably causes hardware and computational complexity in baseband and radio frequency (RF) elements, the problem can be mitigated without serious performance degradation by limiting the number of baseband and RF elements below the number of transmit antennas of base station and opportunistically selecting transmit antennas according to channel states. Accordingly, this paper proposes a simple antenna selection scheme for multiuser-based Massive MIMO systems.

Reverse Total Shoulder Arthroplasty in the Massive Rotator Cuff Tear

  • Jeong, Jin Young;Cha, Hong Eun
    • Clinics in Shoulder and Elbow
    • /
    • v.17 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • In the patients of retracted massive rotator cuff tears, there are much of difficulty to functional recovery and pain relief. Nevertheless the development of treatment, there are still debates of the best treatments in the massive rotator cuff tears. Recenlty various of treatments are introduced; these are acromioplasty with debridement, biceps tenotomy, great tuberoplasty with biceps tenotomy, partial repair, mini-open rotator cuff repair, arthroscopic rotator cuff repair, soft tissue augmentation, tendon transfer, flap, hemiarthroplasty, and reverse total shoulder arthroplasty. That there is no difference of result for reverse total shoulder arthroplasty between patients who have massive rotator cuff tear without arthritis and patients who have cuff tear arthropathy. Reverse total shoulder arthroplasty is one of reliable and successful treatment options for massive rotator cuff tear. Especially it is more effective for patients who have a pseudoparalysis.

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

A Study on the Establishment of Massive IoT based on Low Power Wide Area Network Technology (저전력 광역 네트워크 기술 기반 Massive IoT 구축 연구)

  • Lee, Gyeongheon;Hong, Jiyeon;Youn, Joosang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.103-104
    • /
    • 2019
  • 최근 스마트시티 구축 사업에서 사물인터넷 기반 서비스 개발이 활발히 진행 중이다. 그 서비스들을 제공하기 위해 사용되어야 할 디바이스 수가 수백만 개까지 증가할 것으로 예상하고 있으며 수백만 개의 디바이스들을 수용하기 위해서는 Massive IoT 네트워크의 환경 구축을 필요로 하고 있다. 따라서 본 논문에서는 Massive IoT 네트워크 환경을 구축하기 위해 저전력 광역 네트워크(LPWAN) 기술 중 LoRa(Long Range) 네트워크가 적용이 가능한지를 LoRaSim을 이용하여 시뮬레이션한다. 시뮬레이션한 결과 중 충돌 횟수를 통해 충동률을 구하고 그래프를 이용하여 신뢰성을 나타내며, Massive IoT 네트워크에 적합성에 대해 분석한다.

  • PDF

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.

Energy Efficiency Analysis of Antenna Selection Scheme in a Multi-User Massive MIMO Network (다중 사용자 거대 다중 안테나 네트워크에서 안테나 선택 기법의 에너지 효율 분석)

  • Jeong, Moo-woong;Ban, Tae-Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.57-60
    • /
    • 2015
  • Recently, a multi-user massive MIMO (MU-Massive MIMO) network has been attracting tremendous interest as one of technologies to accommodate explosively increasing mobile data traffic. The MU-Massive MIMO network can significantly enhance the network capacity because a base station (BS) equipped with large-scale transmit antennas can transmit high-rate data to multiple users simultaneously. In the MU-Massive MIMO network, transmit antenna selection schemes are generally used to decrease the computational complexity and cost of the BS. In this paper, we investigate the energy efficiency of the transmit antenna selection scheme in the MU-Massive MIMO network and the optimal number of selected transmit antennas for maximizing the energy efficiency.

  • PDF