• Title/Summary/Keyword: Mass-size distribution

Search Result 389, Processing Time 0.029 seconds

Seasonal Variation of Size Distributions of Polycyclic Aromatic Hydrocarbons in Air Particulates (대기 부유분진중 다환방향족 탄화수오류의 계절적 입경농도 분포 변이)

  • Chung, Yong;Park, Seong-Eun;Hwang, Man-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.577-588
    • /
    • 1998
  • Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion and, in urban area atmosphere, are mainly traffic or heating in origin. Size-segregated aerosol samples were collected on the Eixth story of Shinchon on the Yonsei campus, using a high-volume cascade impactor, between August 1994 and September 1995. Ten PAHs were analyzed by GC/MSD. The size distribution of PAH-containing particulates followed approximately a log-normal relationship with the majority of PAH content associated with particles below 3.0mm. PAHs concentration in submicron particles increased during the winter months. The Mass Median Diameter (MMD) value of annual particulates in the heavy traffic area of Shinchon shows about 1.6 pm. The MMD values of air particulate in winter were the lowest values and similar to that in summer, while MMD values of seasonal PAHs were generally lower than 1.0 pm. Among the PAHs, MMD values of PAHs with the more than 5 benzen ring were averagely lower than those with 4 benzin rings. Especially MMD's of dibenzo (a, h) anthracene in winter was clearly lower than in summer. This reason may be caused by fuels used for heating. In this area, 50∼80% PAHs mass was particles smaller than 1.0mm aerodynamic diameter in size range, and the MMD values of PAHs lower than those of other country's area.

  • PDF

Analysis of Diesel Nano-particle Number Distribution Characteristics for Three Different Particle Measurement Systems (3개 입자측정스시템별 디젤 극미세입자의 수량분포 특성 비교)

  • Lee, Jin-Wook;Kim, Hong-Suk;Cho, Gyu-Baek;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.144-150
    • /
    • 2007
  • In recent years, the particle number emissions rather than particulate mass emissions in automotive engine have become the subject of controversial discussions. Recent results from the health effects studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to diesel exhaust. So, the concern is instead now focusing on nano-sized particles emitted from I. C. engine. This study has been performed for the better understanding about the engine nano-particle for 3-measurement systems with different measuring principle. Firstly, EEPS is a newly introduced instrument for size distribution measurement of engine exhaust particles. It can measure nano-particles with an adequate resolution and in real time. In this study, the characteristics of EEPS were compared with ELPI and SMPS. As a research results, EEPS showed a same effect of engine load on the size distribution with ELPI and SMPS. But the quantitative results of EEPS were more similar to SMPS than ELPI, because the EEPS and SMPS use a same principle for classifying particles by size. The capability for transient measurement of EEPS was equivalent to that of ELPI.

Reduced ion mass effects and parametric study of electron flat-top distribution formation

  • Hong, Jinhy;Lee, Ensang;Parks, George K.;Min, Kyoungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.2-118.2
    • /
    • 2012
  • In particle-in-cell (PIC) simulation studies related to ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. But it was not clearly verified how electrons dynamics are coupled with the slower evolution of ion-ion interactions under the external electric field. We have studied the ion beam driven instability using a 1D electrostatic PIC code by comparing different rescaling of parameter with real ion mass from the reference simulation with reduced ion mass. As the external electric field is stronger, the excited unstable mode range was more sensitively affected by the system size with the real mass ratio than the reduced ion mass. The results show that the reduced mass ratio should be used cautiously in PIC code as the electron dynamics can modify the ion instabilities. Additionally we found the formation of electron flat-top distribution in the final saturation stage. Simulation results show that in the early phase electrostatic solitary waves are quasi-periodically formed, but later they are fully dissipated resulting in heated, flat-top distributions. New electron beam components are occasionally formed. These are a consequence of the interaction with solitary wave structures. We parametrically investigate the development of electron phase space distributions for various drift speeds of ion beams and temperature ratios between ions and electrons

  • PDF

Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul (다단입자채집기와 입자계수기 자료를 이용한 서울 에어러솔 밀도 계산)

  • Kim, Jeong-Eun;Lee, Hae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • In order to calculate the aerosol bulk densities of $PM_{1.0}$ and $PM_{10}$, aerosol mass and number concentrations were measured for the period of December 2008~April 2009. $PM_{1.0}$ and $PM_{10}$ mass concentrations were measured using a cascade impactor (Micro-Orifice Uniform Deposit Impactor, MOUDI) while their volume concentrations were calculated based on number concentrations from an environmental dust monitor (EDM). Normal aerosol size distribution fitting functions were retrieved for number size distribution since aerosols < $2.5{\mu}m$ were measured from the EDM. Strong correlation was found between $PM_{1.0}$ mass and volume concentrations obtained with a $R^2$ of 0.95. The calculated average bulk densities of $PM_{1.0}$ and $PM_{10}$ were $1.97{\pm}0.33g/cm^3$ and $2.15{\pm}0.18g/cm^3$, respectively.

Mass Prediction of Various Water Cluster Ions for an Accurate Measurement of Aerosol Particle Size Distribution (에어로솔 입자의 정밀입경분포 측정을 위한 물분자 클러스터 이온의 질량예측)

  • Jung, Jong-Hwan;Lee, Hye-Moon;Song, Dong-Keun;Kim, Tae-Oh
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.752-759
    • /
    • 2007
  • For an accurate measurement of aerosol particle size distribution using a differential mobility analyser (DMA), a new calculation process, capable of predicting the masses for the various kinds of water cluster ions generated from a bipolar ionizer, was prepared by improving the previous process. The masses for the 5 kinds of positive and negative water cluster ions produced from a SMAC ionizer were predicted by the improved calculation process. The aerosol particle charging ratios calculated by applying the predicted ion masses to particle charging equations were in good accordance with the experimentally measured ones, indicating that the improved calculation process are more reasonable than the previous one in a mass prediction of bipolar water cluster ions.

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

The Importance of Dry Deposition : Dry Deposition Fluxes of Heavy Metals In Seoul, Korea During Yellow-Sand Events

  • Yi, Seung-Muk
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.76-85
    • /
    • 2003
  • Mass and elemental dry deposition fluxes and ambient particle size distributions were measured using dry deposition plates and a cascade impactor, from March to November 1998 in Seoul, Korea. During the spring sampling period several yellow sand events characterized by long range transport from China and Mongolia impacted the area. During these events the mass fluxes were statistically the same as during springtime non-yellow-sand events. However, most elemental fluxes were higher. In general, the flux ratios of both crustal (Al, Ca, Mn) and anthropogenic elements (Ni, Pb) to total mass measured during the daytime yellow-sand events were substantially higher than those measured in spring daytime during non-yellow-sand time periods. During all seasons the average measured daytime fluxes were about two times higher than at nighttime. The flux of primarily anthropogenic metals (Cu, Ni, Pb, Zn) and Mn was on average one to two orders of magnitude lower than the flux of the crustal metals Al and Ca. As is typically found two modes, fine (0.1∼l.0 $\mu\textrm{m}$) and coarse (1.0∼10.0 $\mu\textrm{m}$) were present in the measured size distributions (<10 $\mu\textrm{m}$). The particles in the coarse mode constitute a major portion of the measured mass size distribution during the yellow-sand events possibly due to the long-range transport of those particles from China.

  • PDF

Comparison of Overall Characteristics between an Air-Assisted Fuel Injector and a High-Pressure Swirl Injector- Part II: Microscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교 - Part II: 미시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.28-35
    • /
    • 2000
  • As a second part of the comparison study, microscopic features of an air-assisted fuel injector(AAFI) and a high-pressure swirl injector (HPSI) were characterized. They consist of the internal spray structure in terms of fuel mass and drop diameter, the overall atomization performance with respect to operating parameters and the drop size distribution. Large droplets are concentrated in around the head part of a spray field of the HPSI, while in the case of the AAFI, they were distributed in the tail part. Although the AAFI showed the better atomization performance, the feasible ranges of operating parameters such as injection and ambient pressure were found to be wider in the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. Drop size distribution of the AAFI sprays was more dispersed than that of the HPSI. However, at the well-atomized condition, it appeared to be very uniform.

  • PDF