• Title/Summary/Keyword: Mass-damper-spring System

Search Result 124, Processing Time 0.035 seconds

Vibration Characteristics and Topology Optimization of a Double Damper Lock-Up Clutch in a Torque Converter System (토크컨버터 장착 이중댐퍼 체결클러치의 진동특성해석 및 위상최적화)

  • Kim, Kwang-Joong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1129-1136
    • /
    • 2010
  • Damper springs in a drive-line absorb the impulsive torque generated when a lock-up clutch is connected directly, instead of via a fluid coupling. Design optimization and finite element analysis were performed to improve the shock- and vibration-absorption capacity of the lock-up clutch. For this purpose, a multi-body dynamics model was developed by including the main parts of a vehicle, such as an engine with a clutch, a transmission, drive shafts and wheels, and a whole mass of a vehicle. The spring constants were selected so that resonance of a system could be avoided. Damper springs were optimized on the basis of the spring constants, impulsive torques, compressed angles, spring counts, fatigue constraints, etc. Topology optimization was performed for three plates with the damper springs. The compliance was set up as an objective function, and volume fraction was fixed below 0.3. A new shape for the plates was proposed on the basis of the topology result.

Mathematical Modelling and Behavior Analysis of Addiction of Physical Exercise (운동 중독의 수학적 모델링과 거동 해석)

  • Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.615-621
    • /
    • 2014
  • The Addiction problems have been became a social problem; the social efforts continue to solve these problems. One of those efforts, we need to establish a mathematical modeling for an addictive model to perform analysis of behavior by using this modeling. We need to process the research that can be judged before and after addictive status with result of the behavior analysis. We have to process an observation of transition from before to after addictive status. According to those necessary, this paper proposed the physical exercise model that is composed by novel second order system, which consisted of Spring-Damper-Mass system with equivalence in order to evolve an addictive equation for physical exercise. This paper also is analyzed by the behaviors for those the addictive equation of physical exercise.

Characteristics of Acoustic Damping Induced by Helmholtz Resonators with Various Geometric Factors in a Model Chamber (모형연소실내에서 헬름홀츠 공명기의 기하학적 형상 인자에 따른 음향 감쇠 특성)

  • Choi, Hyo-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.254-257
    • /
    • 2010
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. Acoustic damping is quantified by the amplitude of the fluid velocity in mass-spring-damper system. The length of an orifice, the volume of a cavity, and the diameters of an orifice and a cavity in the resonator are selected as design parameters for tuning of the resonator. It is found that acoustic damping capacity is increased by shorter orifice and longer cavity in the resonator. As the ratio of the orifice diameter to the cavity diameter increases in the resonator, the damping capacity decreases.

  • PDF

Analysis of optimum condition for the suspension system with torsion bar spring (Torsion bar spring을 가진 현수장치에 대한 최적조건 해석)

  • 손병진;신영철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.40-45
    • /
    • 1982
  • The spring constant and damping coefficient are vital factors of ride comfort and driving stability in the vibration of the vehicle which is mainly induced by a variety of the surface irregularity. This paper reviewed the optimum condition of the damping factor derived from the typical model of two mass-two degrees of freedom. Through the evaluation and discussion, it was presented that the spring of the torsion bar type was not effective for the driving stability in the large displacement of the wheel, and also that the damper with progressive performance has to be fundamentally selected to meet the requirement of the driving suability when this kind of spring is used as a suspension system of the vehicle.

  • PDF

An experimental study on resonance reduction of system with one degree of freedom by magneticfluid (자성 유체를 이용한 1자유도 계의 공진멸소에 관한 실험적 연구)

  • Chun, U. H.;Lee, B. G.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.131-137
    • /
    • 1999
  • Under magnetism , as the magneticfluid is being itself magnetized, increase the apparent viscosity because of its body force and has the magnetic characteristics in response ot magnetism, the magnetic fluid is getting attention in various field. The magnetic fluid has the fluidity, which is a special characteristics of fluid and the magneticism , which is a special one of solid. Using this characteristics, this study has been proceeded to show the basic data for developing of a viscous damper with magnetism fluid as hydraulic fluid. Experimental study shows that the application of magnetic field is effective reducing the resonance characteristics of the spring-mass system.

  • PDF

Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System (디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Shin, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

A study on the dynamic vibration absorber having non-linear spring and linear damper (非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.473-478
    • /
    • 1987
  • In this paper the optimum values of natural frequency ratio and damping ratio for damped systems were studied by numerical analysis. The relation between the amplitude ratio and frequency ratio obtained for the non-linear dynamic vibration absorber was found and it was compared with that of linear system. The results shows that the optimum frequency ratio decreases and the optimum damping ratio increases when the mass ratio of the damped system increases. The resonance frequency ratio and amplitude ratio decrease as mass ratio increases for the non-linear spring system.

Characteristics Analysis of Flexible Rail in Levitation Control System (부상제어 시스템에서 유연레일의 특성 분석)

  • Kim, Jong-Moon;Kim, Choon-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.733-734
    • /
    • 2006
  • In this parer, characteristics of the flexible rail in levitation control system are analysed. The magnetic levitation system is an electromagnet type and is full-scaled vehicles. The system consists of electromagnet, chopper, flexible rail, secondary suspension system and levitation controller. The mathematical modelling for the whole system is carried out. Especially, the flexible rail is modelled using second-order mass-spring-damper system. Using the derived model, the dynamic characteristics for the system are presented with different vehicle speed.

  • PDF

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure (타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰)

  • Maeng, Young-Jun;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.