• Title/Summary/Keyword: Mass-Spring-Damper

Search Result 176, Processing Time 0.028 seconds

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System (질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석)

  • Jeong, Sang-Seop;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

On the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.341-360
    • /
    • 2003
  • The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM). To this end, a technique was presented to replace each "spring-damper-mass" system by a massless equivalent "spring-damper" system with the specified effective spring constant and effective damping coefficient. Then, the mode superposition approach was used to transform the partial differential equation of motion into the matrix equation, and the eigenvalues of the complete system were determined from the associated characteristic equation. To verify the reliability of the presented theory, all numerical results obtained from the ANCM were compared with those obtained from the conventional finite element method (FEM) and good agreement was achieved. Since the order of the property matrices for the equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU time required by the ANCM is much less than that by the FEM.

A Review of Optimum Damper Characteristics of Dual Mass Flywheel (듀얼매스 플라이휠의 최적 댐퍼 특성에 대한 고찰)

  • 박동훈;최명진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.986-990
    • /
    • 2002
  • Dual Mass Flywheel(DMF) is used in order to improve the vibration characteristics of drivetrain of manual transmission vehicles. Regardless of its complexity and high cost, application of DMF is keep increasing due to a trend of using Diesel engines in passenger cars and light weight design of drivetrains. Modeling and analysis of DMF is rather simple, but finding out optimum parameters of damper may not be easy. Furthermore, its realization in DMF has some limitations due to DMF's structure and its structure dependent damping characteristics. Requirements on spring-damper characteristics of DMF has been reviewed and investigations on structures and damping characteristics of currently Produced DMFs have been made in this paper. Also, ideal spring and damper characteristics has been proposed based on such investigations.

  • PDF

A Study on the Characteristics of Dynamic Vibration Absorber with Coil Spring and Oil Damper (코일스프링과 오일댐퍼를 가지는 동흡진기의 특성에 관한 연구)

  • 김광식;안찬우
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.170-175
    • /
    • 1988
  • A study on the dynamic vibration absorber with coil spring and oil damper was carried out both theoretically and experimentally. A main mass is attached to a foundation using coil spring and oil damper. A harmonic motion was applied to the foundation. The effects of the dynamic vibration sbsorber are theoretically summarized in graphs, and tested on a vibratory model for the isolation of actual mechanical vibration. As a result, the first resonance amplitude ratio increased and the second resonance amplitude ratio decreased as the absorber spring constant increased. When the absorber mass increase, the first resonance amplitude ratio is decreased and the second resonace amplitude ratio is increased.

  • PDF

Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine

  • Lalonde, Eric R.;Dai, Kaoshan;Bitsuamlak, Girma;Lu, Wensheng;Zhao, Zhi
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-active varying-spring TMD, a semi-active varying-damper TMD, a semi-active varying-damper-and-spring TMD, as well as these four damper systems paired with an additional smaller passive TMD near the mid-point of the tower. The mechanism and controllers for each of these TMD systems are explained, such as employing magnetorheological dampers for the varying-damper TMD cases. The turbine is modelled as a lumped-mass 3D finite element model. The uncontrolled and controlled turbines are subjected to loading and operational cases including service wind loads on operational turbines, seismic loading with service wind on operational turbines, and high-intensity storm wind loads on parked turbines. The displacement and acceleration responses of the tower at the first and second mode shape maxima were used as the performance indicators. Ultimately, it was found that while all the semi-active TMD systems outperformed the passive systems, it was the semi-active varying-damper-and-spring system that was found to be the most effective overall - capable of controlling vibrations about as effectively with only half the mass as a passive TMD. It was also shown that by reducing the mass of the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of slightly increased vibrations at the tower top.

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

Floated Wafer Motion Modeling of Clean Tube system

  • Shin, Dong-Hun;Yun, Chung-Yong;Jeong, Kyoo-Sik;Choi, Chul-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1264-1268
    • /
    • 2004
  • This paper presents a wafer motion modeling of the transfer unit and the control unit in the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. The motion in the transfer unit is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated plate is modeled as a linear spring. The motion in the control unit is also modeled as another mass-spring-damper system, but in two dimensional systems. Experiments with a clean tube system built for 12-inch wafers show the validity of the presented force and motion models.

  • PDF

Instability caused by interaction between a rotating disk and a mass-spring-damper system (회전원판과 스프링-댐퍼를 가진 질점계의 상호작용에 의한 불안정성)

  • Kim, C.B;Han, D.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2038-2046
    • /
    • 1997
  • In this paper the instability of the system which has a disk and a mass-spring-damper system interacting through a medium having stiffness and damping is analyzed. To solve the equations of motion of this systme, it is assumed that the solution consists of the eigenfunctions which are the products of the Bessel functions and sine or cosine functions. The former represents the radial characteristics of the disk and the latter represents the circumferential characteristics. Using this assumed solution and the orthogonality of the eigenfunctions, the equations of motion can be transformed into a set of equations of motion with variables dependent only on the time. After this set is changed to the state equation, the eigenvalue problem can be made. Once the eigenvalues are calculated according to the angular velocity of the disk, the dynamic characteristics ofthis system is obtained. Because the thickness of the disk and the element characteristics of the mass-spring-damper system have important effects on the stability of the system, it will be understood how these factors affect the system and then a method to ameliorate the stability of the system with a disk will be presented.

A Study on Dynamic Vibration Absorber Using Zener's Model (Zener 모델을 사용한 동흡진기 특성 연구)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF