• Title/Summary/Keyword: Mass transport velocity

Search Result 79, Processing Time 0.029 seconds

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • Proceedings of the KSEEG Conference
    • /
    • 2005.04a
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

Numerical Investigations of Turbulent Stratified Premixed Flames (난류 성층 예혼합 화염장의 상세구조 해석)

  • Jeon, Sangtae;Kim, Namsu;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.183-184
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. Computations are made for the non-swirling turbulent stratified premixed flames including SWB1, SWB5 and SWB9. The numerical results obtained in this study are precisely compared with experimental data in terms of axial velocity, unconditional means and conditional means for scalar field including temperature and species mass fraction.

  • PDF

Analysis of two phase thrbulent flow in pipe with suspension of solid particles (고체분말이 부상된 이상난류 관유동의 해석)

  • ;;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

Investigation of Nonlinear Numerical Mathematical Model of a Multiple Shaft Gas Turbine Unit

  • Kim, Soo-Yong;Valeri P. Kovalevsky
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2087-2098
    • /
    • 2003
  • The development of numerical mathematical model to calculate both the static and dynamic characteristics of a multi-shaft gas turbine consisting of a single combustion chamber, including advanced cycle components such as intercooler and regenerator is presented in this paper. The numerical mathematical model is based on the simplified assumptions that quasi-static characteristic of turbo-machine and injector is used, total pressure loss and heat transfer relation for static calculation neglecting fuel transport time delay can be employed. The supercharger power has a cubical relation to its rotating velocity. The accuracy of each calculation is confirmed by monitoring mass and energy balances with comparative calculations for different time steps of integration. The features of the studied gas turbine scheme are the starting device with compressed air volumes and injector's supercharging the air directly ahead of the combustion chamber.

Circulation in the Southwestern East Sea (Japan Sea) in July 1993 Determined by an Inverse Method

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 1999
  • To estimate absolute transports by advection in the southwestern East Sea (Japan Sea), an inverse method was applied to CTD data obtained in July 1993. The relative velocities are calculated using the thermal wind equation. The inverse model was formulated to obtain a reference velocity based on the mass conservation in each of four vertical layers within a region enclosed by hydrographic sections and the coastal boundary. The flow patterns in the surface layer are clockwise and anti-clockwise in the regions south and northwest of Ulleung Island, respectively, and a strong northward flow appears in between them. In the second layer, the flow fields are generally weak. The inverse calculation yields the southward flow along the coast, and this suggests that the subsurface low salinity water in the Ulleung Basin is supplied by the southward transport along the east coast of Korea.

  • PDF

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride (지상 및 미소중력 환경에서 물리적 승화법 공정에 미치는 불순물의 영향 분석: 염화제일수은에 대한 응용성)

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.335-341
    • /
    • 2016
  • In this study, impurity effects on diffusive-convection flow fields by physical vapor transport under terrestrial and microgravity conditions were numerically analyzed for the mixture of $Hg_2Cl_2-I_2$ system. The numerical analysis provides the essence of diffusive-convection flow as well as heat and mass transfer in the vapor phase during the physical vapor transport through velocity vector flow fields, streamlines, temperature, and concentration profiles. The total molar fluxes at the crystal regions were found to be much more sensitive to both the gravitational acceleration and the partial pressure of component $I_2$ as an impurity. Our results showed that the solutal effect tended to stabilize the diffusive-convection flow with increasing the partial pressure of component $I_2$. Under microgravity conditions below $10^{-3}g_0$, the flow fields showed a one-dimensional parabolic flow structure indicating a diffusion-dominant mode. In other words, at the gravitational levels less than $10^{-3}g_0$, the effects of convection would be negligible.

A Study on Surface Drift Velocity in Water Waves (파랑에 의한 수표면 부유속도에 관한 연구)

  • 김태인;최한규;권혁재
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.329-339
    • /
    • 1995
  • To clarify the surface drift velocity in gravity waves. experimental data measured in a two-dimensional wave flume were compared with theoretical values predicted by the Stokes 2nd- and 5th- order theories as well as by the conduction solution or Longuet-Hinggins (1953). Relative water depth and wave height ranged 0.040.13. For a closed flume condition, Stokes 2nd-order theory gives lower values than the experimental data, and the differences increase as both relative water depth and wave height increase. Based on the observed data of the surface drift velocities, a modified Parabolic model of the return current velocity Profile has been suggested, which is Proved to fit better to the existing experimental data of mass transport velocity profiles in a closed wave flume than the models of Longuet-Hinggins (1953) and Stokes wave theories do.

  • PDF

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF