• Title/Summary/Keyword: Mass load

Search Result 1,038, Processing Time 0.028 seconds

Development Mechanism of Circulation Current and Oceanographic Characteristics in Yeongil Bay (영일만 순환류 발생구조와 해황 특성)

  • Yoon, Han-Sam;Lee, In-Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.140-147
    • /
    • 2005
  • We investigated the interactions between coastal waters of the Yeongil Bay, Korea, and oceanic waters of the Eastern Sea, as wet 1 as the development mechanism of vertical circulation currents in the bay. The oceanic waters of the bay have an average water temperature of $12.2{\sim}18.4^{\circ}C$ and salinity of $33.32{\sim}34.43$ PSU. Results of spectral analysis have shown that the period of revolution between oceanic and coastal waters is about 0.84-0.91 years in the surface waters and 1.84 years in the bottom layer. The wind direction in the bay shifts between SW and NE, with the main wind direction being SW during the winter period, and water mass movement is influenced by such seasonal variations in wind direction. Vertical circulation currents in the bay are structured by two phenomena: the surface riverine outflow layer from the Hyeong-san River into the open sea and the bottom oceanic inflow layer with high-temperature and salinity into the bay. These phenomena start the spring when the water mass is stable and become stronger in the summer when the surface cold water develops over a 10-day period. Consequently, tidal currents have little influence in the bay; rather, these vertical and horizontal circulation currents play an important role in the transport of the pollutant load from the inner bay to the open sea.

  • PDF

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

Estimation of Shaft Resistance of Drilled Shafts Based on Hoek-Brown Criterion (Hoek-Brown 공식을 이용한 현장타설말뚝의 주면마찰력 산정)

  • 사공명;백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.209-220
    • /
    • 2003
  • Modification of general Hoek and Brown criterion is carried out to estimate the shaft resistance of drilled shaft socketed into rock mass. Since the general Hoek-Brown criterion can consider the in-situ state of the rock mass, the proposed method, estimating the unit shaft resistance of drilled shafts based on the Hoek-Brown criterion, has increased flexibility compared to other methods exclusively considering uniaxial compressive strength of intact rocks. The proposed method can form the upper and lower bounds, and most culled data (from 21 pile load tests) from the literature can be found between these two bounds. A comparison between the estimated and observed unit shaft resistances shows quite a good correlation even with crude assumptions for the input parameters. The best-fit line drawn from this analysis shows that at the lower strength of intact rocks (up to 10MPa), Horvath and Kenney's equation shows a good correlation with the measured values, and fur strong rocks Rosenberg and Journeaux's equation provides a close estimation with colleted data. The results of parametric studies for GSI and confining stress show that the normalized unit shaft resistance increases with these two factors. In addition, coefficient of the equational form of the estimation can vary with GSI and confining stresses.

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

Diagnosis of Development Projects and Water Quality Changes in the Environmental Management Sea Areas and Improvement of Impact Assessment (환경관리해역의 이용개발현황과 수질변화경향 및 영향평가 개선방안)

  • Jun, Eun Ju;Yi, Yong Min;Lee, Dae In;Kim, Gui Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • The total number of Sea Area Utilization Consultation in the environment management sea areas reviewed from 2015 to 2017 were 60. The number of development projects in the environment conservation sea areas decreased steadily, but special management sea areas increased. Development types in environment management sea areas showed that artificial structure installation was the highest ratio, followed by fishery port development and construction of habor and coastal maintenance and sea water intake and draining. By comparing the trend of water quality changes using marine environment information system (MEIS) data in the environment management areas from 2006 to 2017, COD showed no significant changes but the environment conservation sea areas increased slightly, and the concentration of TN and TP decreased. Gwangyang and Masan bays in the special management sea areas and Gamak bay in the environment conservation sea areas displayed oxygen deficient mass in the summer. As the use of development projects of the environment management sea areas are performed continuously, an analysis of the status of sufficient water quality changes is necessary for environmental impact assessment (Sea Area Utilization Consultation) in the marine environment and should be evaluated mainly for management of contamination by diagnosing thoroughly water quality effects and the pollution of sediment. Especially, the water quality goal for the purpose of designation in each of the environment management sea areas is set clearly, connection with pollution source control and the total pollution load management system (TPLMS) should be proposed and measured to reduce the amount of contaminated water.

Performance-based wind design of tall buildings: concepts, frameworks, and opportunities

  • Bezabeh, Matiyas A.;Bitsuamlak, Girma T.;Tesfamariam, Solomon
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.103-142
    • /
    • 2020
  • One of the next frontiers in structural wind engineering is the design of tall buildings using performance-based approaches. Currently, tall buildings are being designed using provisions in the building codes and standards to meet an acceptable level of public safety and serviceability. However, recent studies in wind and earthquake engineering have highlighted the conceptual and practical limitations of the code-oriented design methods. Performance-based wind design (PBWD) is the logical extension of the current wind design approaches to overcome these limitations. Towards the development of PBWD, in this paper, we systematically review the advances made in this field, highlight the research gaps, and provide a basis for future research. Initially, the anatomy of the Wind Loading Chain is presented, in which emphasis was given to the early works of Alan G. Davenport. Next, the current state of practice to design tall buildings for wind load is presented, and its limitations are highlighted. Following this, we critically review the state of development of PBWD. Our review on PBWD covers the existing design frameworks and studies conducted on the nonlinear response of structures under wind loads. Thereafter, to provide a basis for future research, the nonlinear response of simple yielding systems under long-duration turbulent wind loads is studied in two phases. The first phase investigates the issue of damage accumulation in conventional structural systems characterized by elastic-plastic, bilinear, pinching, degrading, and deteriorating hysteretic models. The second phase introduces methods to develop new performance objectives for PBWD based on joint peak and residual deformation demands. In this context, the utility of multi-variate demand modeling using copulas and kernel density estimation techniques is presented. This paper also presents joined fragility curves based on the results of incremental dynamic analysis. Subsequently, the efficiency of tuned mass dampers and self-centering systems in controlling the accumulation of damage in wind-excited structural systems are investigated. The role and the need for explicit modeling of uncertainties in PBWD are also discussed with a case study example. Lastly, two unified PBWD frameworks are proposed by adapting and revisiting the Wind Loading Chain. This paper concludes with a summary and a proposal for future research.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

A Study on the Framework and Arrangement of Interior Column in Single-Story Buddhist Halls (단층 불전 내주의 결구 및 배열 방식에 관한 연구)

  • Lee, U-Jong;Jeon, Bong-Hui
    • Korean Journal of Heritage: History & Science
    • /
    • v.33
    • /
    • pp.210-255
    • /
    • 2000
  • This study aims to classify the framework and arrangement of interior columns (Naeju) which are used in single-story Buddhist halls into several types, and to develop a theory on the process of changes among those types. Since interior columns are building materials which hold up the roof structure and make partitions in the interior space of halls, their framework and arrangement is closely linked to the development of building technology and is expected to reflect new architectural needs. The kinds of interior columns classified by the shape of framework are goju, chaduju, oepyonju, naepyonju. The arrangement of interior columns can he classified by two methods: One which counts the number of the interior column arrangements in a hall, and the other whose classification relates with the side wall columns - Jeongchibup and yijubup. With the combination of these classifications, we can divide the framework and arrangement of interior columns into 8 types From the remains of Korean and Chinese Architecture, we can presume that before the late-Goryo period, jeongchibup had always been applied in the construction of Buddhist halls, and gamju(column reducing) had only been used in examples of small scale. After the founding of Choseon Kingdom, however, national policy had weakened the economic power of Buddhist temples. Because of that, large-scale outdoor Buddhist mass was replaced by small-scale indoor mass, and for this reason, though the scale of Buddhist halls became smaller, the need for a broad interior space became stronger. Thus in early-Choseon period, reduction of interior columns became widely spread. Those types of framework and arrangement of interior columns where yijubup was applied were developed because the rear interior columns arrangements, in order to expand the interior space, have moved backward. Among these types, yiju-goju and yiju-chaduju were developed for the Buddhist halls with paljak roof(hipped-gabled roof), where the load of their side eaves caused structural problems at the side walls. And oepyonju type was for the small-scale and middle-scale Buddhist halls which needed more interior space but didn't want the extension of roof structure. From the local and periodic distribution of each types, we can conclude that the types jeongchi-goju, jeongchi-chaduju and yiju-chaduju have been settled as typical technique of local carpenters. Oepyonju was developed later than the other types, but for its merit of low cost, it became a popular type across the nation.