• 제목/요약/키워드: Mass load

검색결과 1,036건 처리시간 0.026초

스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석 (Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines)

  • 오윤지;손정현
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석 (Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine)

  • 김준배;신현경
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.

공압 핫프레스를 이용한 마이크로 폴리카보네이트 성형에 관한 연구 (A Study on Polycarbonate Microfabrication Using a Pneumatic Hot Press)

  • 여창영;박태현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.106-112
    • /
    • 2021
  • Thermoplastic microfluidic devices are used in BioMEMS for medical and biotechnology applications, such as gene extraction, DNA analysis, and virus detection. In this research, a simple fabrication protocol with a commercially available pneumatic hot press is proposed and demonstrated for polycarbonate microfluidic devices. Microfluidic channels with a width of 200 ㎛ and a height of 10 ㎛ were designed and machined onto a brass plate as a mold insert using a CNC milling machine. The resulting microfluidic channels on the mold insert were assessed and found to have an actual width of 198 ㎛ and a height of 10 ± 0.25 ㎛. The microfluidic channels were replicated on a polycarbonate sheet using the proposed replication technique at 146℃ for 20 minutes under a constant load of 2400 kgf. The devices were then naturally cooled to 100℃ while maintaining the same pressure. It was found that the microchannels were successfully replicated in the polycarbonate, with a width of 198 ㎛ and a height of 10.07 ㎛. The proposed replication technique thus offers the rapid mass production of high-quality microfluidic devices at a low cost with a process that, unlike conventional photolithography systems, does not require expensive equipment.

고속 공기 스핀들 설계를 위한 근사해석과 회전체동역학의 비교 (Comparison of Approximation and Rotordynamics Solutions for Design of a High Speed Air Spindle)

  • 이재혁;박상신
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.310-316
    • /
    • 2019
  • This paper presents two methods for designing a high-speed air spindle operated over the rotational speed of 50,000 rpm. The first method is an approximate method, which assumes a symmetric spindle shape even though it is not symmetric in reality. The second is an analysis of rotordynamics using beam and solid models. The approximate method can be used to calculate the bearing load capacities, stiffness and damping coefficients, stability of the shaft system, and response of the forced excitation from the unbalanced mass. Designers can use this method to determine the dimensions of the desired spindle at the first stage of the design. The more detailed behavior of the spindle can be calculated using the rotordynamics theory using beam and solid models based on the Finite Element Method. In this paper, a spindle, with two air bearings, one motor at the end, and two air thrust bearings, is newly developed. The solutions from the two rotordynamics theories are compared with the solution obtained using the approximate method. The three calculations are in agreement, and the procedure for the design of a spindle system, supported on the externally pressurized air bearings, ispresented and discussed.

냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델 (Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System)

  • 윤상현;윤진원;황건용
    • 한국수소및신에너지학회논문집
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Mathematical modeling of the local temperature effect on the deformation of the heat-shielding elements of the aircraft

  • Antufiev, Boris A.;Sun, Ying;Egorova, Olga V.;Bugaev, Nikolay M.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.59-68
    • /
    • 2022
  • The physical and mathematical foundations of the heat-shielding composite materials functioning under the conditions of aerodynamic heating of aircraft, as well as under the conditions of the point effect of high-energy radiation are considered. The problem of deformation of a thin shallow shell under the action of a local temperature field is approximately solved. Such problems arise, for example, in the case of local destruction of heat-protective coatings of aircraft shells. Then the aerodynamic heating acts directly on the load-bearing shell of the structure. Its destruction inevitably leads to the death of the entire aircraft. A methodology has been developed for the numerical solution of the entire complex problem on the basis of economical absolutely stable numerical methods. Multiple results of numerical simulation of the thermal state of the locally heated shallow shell under conditions of its thermal destruction at high temperatures have been obtained.

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • 제28권5호
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

Axial compression mechanical properties of steel reinforced recycled concrete column exposure to temperatures up to 800℃

  • Chen, Zongping;Liang, Yuhan;Mo, Linlin;Ban, Maogen
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.731-746
    • /
    • 2021
  • The purpose of this paper is to investigate the axial bearing capacity and residual properties of steel reinforced recycled aggregate concrete (SRC) column after elevated temperature. A total of 48 SRC columns were designed for the static loading test after elevated temperature. The variables include replacement ratios, designed temperature, target duration, thicknesses of cover concrete, steel ratios and stirrup spacing. From this test, the mass loss ratio and stress load-deformation curve were obtained, and the influence of various parameters on residual bearing capacity were analyzed. ABAQUS was used to calculate the temperature field of specimens, and then got temperature damage distribution on the cross-section concrete. It was shown that increasing of the elevated temperatures leaded to the change of concrete color from smoky-gray to grayish brown and results in reducing the bearing capacity of SRC columns. The axial damage and mechanism of SRC columns were similar to those of reinforced natural aggregate concrete columns at the same temperatures. Finally, the calculation method of axial compressive residual bearing capacity of SRC columns recycled concrete columns after high temperature was reported based on the test results and finite element analysis.

비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석 (Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성 (Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.