• Title/Summary/Keyword: Mass energy absorption coefficient

Search Result 37, Processing Time 0.024 seconds

Derivation of Photon Energy Fluence and Mass Energy Absorption Coefficient for 1 Gy Absorbed Dose of Water in Brachytherapy using Ir192 Source (Ir192 선원을 이용한 근접치료에서 물 흡수선량 1 Gy에 대한 광자에너지 플루언스와 질량에너지흡수계수 유도)

  • Kim, Jong-Eon;Ahn, Il-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • The purpose of this study is to derive photon energy fluence and mass energy absorption coefficient for 1 Gy of absorbed dose of water in brachytherapy using an Ir192 source. From the radiotherapy physics written by Khan, the half-value of lead for the gamma ray beam of the Ir192 source was obtained. The linear attenuation coefficient and the mass attenuation coefficient were calculated from the obtained half-value layer of lead. By matching the calculated lead mass attenuation coefficient with the NIST mass attenuation coefficient data, the photon energy of the matching mass attenuation coefficient was determined as the effective energy. By matching the determined effective energy with the photon energy of the NIST data on the mass energy absorption coefficient of water, the mass energy absorption coefficient of water was obtained as 0.03273 cm2/g(32.73 cm2/kg). The photon energy fluence was calculated as 0.03055 J/cm2 by dividing the obtained mass energy absorption coefficient (32.73 cm2/kg) by the absorbed dose of water 1 Gy.

Experimental Study on Heat and Mass Transfer Characteristics in bundles of horizontal absorption tubes (수평관군 흡수기의 열 및 물질 전달특성에 관한 실험적 연구)

  • 설원실;정용욱;문춘근;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2000
  • On the absorber of absorption chiller/heater, LiBr solution at high concentration is sprinkled on a bundle of horizontal tube cooled by cooling water. In this case, the conditions of LiBr solution and cooling water have an influence on heat/mass transfer coefficient in this system. Therefor it is important to find optimal operation conditions of absorption chiller/heater to save energy. Heat and mass transfer coefficient increased with the increase of solution flow rate, and also heat and mass transfer rate increased but overall heat and mass transfer coefficient decreased by increasing the solution concentration within the experimental range. The superheating of the solution resulted in superior heat transfer character to a state of equilibrium from the point of heat flux and overall heat transfer coefficient.

  • PDF

Monte Carlo approach for calculation of mass energy absorption coefficients of some amino acids

  • Bozkurt, Ahmet;Sengul, Aycan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3044-3050
    • /
    • 2021
  • This study offers a Monte Carlo alternative for computing mass energy absorption coefficients of any material through calculation of photon energy deposited per mass of the sample and the energy flux obtained inside a sample volume. This approach is applied in this study to evaluate mass energy absorption coefficients of some amino acids found in human body at twenty-eight different photon energies between 10 keV and 20 MeV. The simulations involved a pencil beam source modeled to emit a parallel beam of mono-energetic photons toward a 1 mean free path thick sample of rectangular parallelepiped geometry. All the components in the problem geometry were surrounded by a 100 cm vacuum sphere to avoid any interactions in materials other than the absorber itself. The results computed using the Monte Carlo radiation transport packages MCNP6.2 and GAMOS5.1 were checked against the theoretical values available from the tables of XMUDAT database. These comparisons indicate very good agreement and support the conclusion that Monte Carlo technique utilized in this fashion may be used as a computational tool for determining the mass energy absorption coefficients of any material whose data are not available in the literature.

Carbon Dioxide Absorption in a Packed Column Using Guanidine-based Superbase Solution (구아니딘계 초염기 흡수제에 의한 충진탑에서의 이산화탄소 포집 특성)

  • Choi, Young Min;Hong, Yeon Ki;You, Jong Kyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.648-652
    • /
    • 2016
  • The study of $CO_2$ absorption in a packed column by 1,1,3,3-tetramethylguanidine (TMG) dissolved in ethylene glycol is presented. Absorption column of inner diameter 1 in and 0.6 m length was filled with Protruded-packing $0.16in{\times}0.16in$. We investigated the effect of operating conditions on overall mass transfer coefficients as well as on $CO_2$ removal efficiency. The loading values reached at about $1.0mol_{CO2}/mol_{TMG}$. In case of absorbent with lean $CO_2$ loading, the overall mass transfer coefficient was proportional to the concentration of TMG. However, in the range of more than ${\alpha}=0.5molCO_2/molTMG$, the overall mass transfer coefficients decreased with the concentration of TMG. It is due to the increasing of mass transfer resistance in liquid phase as increasing of viscosity at higher loading values.

Analysis of Thermodynamic Design Data for Cooling of Double -Effect Absorption System of Solar Energy using LiBr - water and Ethylene Glycol Mixture (흡수액으로 에틸렌글리콜이 혼합되고 태양열을 이용한 이중효용 흡수식 시스템의 냉방 특성해석)

  • Won, Seung-Ho;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2003
  • For cooling of double effect absorption heat pump system of solar heating source, analysis of thermodynamic design data has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data, enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture ($H_2O$ : CHO ratio 10:1 by mole) by computer simulation are done. The obtained results, COP and mass flow ratio of the water - lithium bromide - ethylene glycol system, are compared with data for the water-Libr pair solution.

Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber (공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법)

  • Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water (저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

Dynamic Analysis of an Ammonia-Water Absorption Chiller (암모니아-물 흡수식 냉각기의 동적 해석)

  • Kim Byong Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.990-998
    • /
    • 2004
  • Dynamic behavior of an ammonia-water absorption system was investigated numerically. Thermal-hydraulic model for a single-effect 3 RT chiller was developed by applying transient conservation equations of total mass, $NH_3$ mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analyses were performed to quantify the effects of bulk concentration and charging ratio on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum charging ratio and bulk concentration were to found to exist, which resulted in the maximum cooling capacity and COP. The time constant increased as the charging ratio increased, but decreased with the increase of bulk concentration.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF