• Title/Summary/Keyword: Mass diffusion

Search Result 650, Processing Time 0.032 seconds

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing (SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.377-385
    • /
    • 2018
  • For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.

Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf

  • Insuan, Wimonrut;Chahomchuen, Thippayarat
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.148-157
    • /
    • 2020
  • Eucalyptus oil is a rich source of bioactive compounds with a variety of biological activities and is widely used in traditional medicine. Eucalyptus citriodora is cultivated for the production of essential oils. However, the mode of antibacterial action of essential oils from E. citriodora is not well-known. This study aimed to determine the chemical components, microbial inhibitory effect, and mechanism of action of the essential oil from E. citriodora. The oil was extracted from E. citriodora leaves by hydro-distillation and the chemical components were analyzed using gas chromatography-mass spectrometry. The antibacterial activities of eucalyptus oil against gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus intermedius) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were screened by disc diffusion method and quantitative analysis was conducted by the microdilution method. The mechanism of action of the extracted essential oil was observed using SEM and analyzed by SDS-PAGE. The major components of E. citriodora oil were citronellal (60.55 ± 0.07%), followed by dl-isopulegol (10.57 ± 0.02%) and citronellol (9.04 ± 0.03%). The antibacterial screening indicated that E. citriodora oil exhibited prominent activity against all tested strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against B. subtilis were 0.5% and 1.0%, respectively. The MIC and MBC concentrations against S. aureus, S. intermedius, E. coli, and P. aeruginosa were 1% and 2%, respectively. As observed by SEM, the antibacterial mechanism of E. citriodora oil involved cell wall damage; SDS-PAGE revealed decrease in protein bands compared to untreated bacteria. Thus, E. citriodora oil showed significant antimicrobial properties and caused cellular damage.

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Isolation and Identification of Active Antimicrobial Substance against Listeria monocytogenes from Ruta graveolens Linne (운향으로부터 Listeria monocytogenes에 대한 항균 활성 물질의 분리 및 구조동정)

  • Ahn, Yong-Seon;Shin, Dong-Hwa;Baek, Nam-In
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1379-1388
    • /
    • 2000
  • Ethanol extracts from Ruta graveolens Linne exhibited strong antimicrobial activities by disc diffusion method against 5 strains of Listeria monocytogenes (ATCC 19111, ATCC 19112, ATCC 19113, ATCC 19114 and ATCC 15313). Ethanol extract from Ruta graveolens Linne was subsequently fractionated by n-hexane, chloroform, ethyl acetate and water. Chloroform fraction of Ruta graveolens Linne showed strong growth inhibition at concentrations as low as 40 ppm level in broth culture medium against 5 strains of L. monocytogenes for 72 hr at $30^{\circ}C$. Single substance(RTG1-1) was isolated by silica gel column chromatography from chloroform fraction of Ruta graveolens Linne. RTG1-1 showed a strong bactericidal activity against L. monocytogenes at a concentration of 20 ppm level. Purified RTG1-1 was identified as gravacridonechlorine by analyses of EI-Mass, $^1H-NMR$ and $^{13}C-NMR$.

  • PDF

Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study

  • Abbaszadegan, Abbas;Gholami, Ahmad;Mirhadi, Hosein;Saliminasab, Mina;Kazemi, Aboozar;Moein, Mahmood Reza
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Objectives: The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX. Materials and Methods: Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX. Results: Twenty-seven constituents were recognized in FGEO. The major component of the oil was ${\beta}$-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at $50{\mu}g/mL$ was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX. Conclusions: FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms.

Bioactive Compound Produced by Endophytic Fungi Isolated From Pelargonium sidoides Against Selected Bacteria of Clinical Importance

  • Manganyi, Madira Coutlyne;Tchatchouang, Christ-Donald K.;Regnier, Thierry;Bezuidenhout, Cornelius Carlos;Ateba, Collins Njie
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.335-339
    • /
    • 2019
  • Endophytic fungi have the ability to live inside the host plant tissues without causing neither symptoms of diseases/or harm. Opportunistic infections are accountable for majority of the outbreaks, thereby putting a burden on the health system. To investigate and characterize the bioactive compounds for the control of bacteria of clinical importance, extracts from endophytic fungi were isolated from indigenous South African medicinal plants. Extracts from endophytic fungi were isolated from 133 fungal strains and screened against Gram positive and negative bacteria namely Bacillus cereus, Escherichia coli, Enterococcus faecium, and E. gallinarum using disk diffusion. Furthermore, gas chromatography-mass spectrometry was performed to identify the bioactive compounds. Sixteen out of one hundred and thirty-three (12%) fungi extracts exhibited antibacterial properties against some of the selected bacteria. E. coli was found to be the most susceptible in contrast to E. faecium and E. gallinarum which were the most resistant. The isolate MHE 68, identified as Alternaria sp. displayed the greater spectrum of antibacterial activities by controlling selected clinical bacteria strains including resistant E. faecium and E. gallinarum. The chemical analysis of the extract from MHE 68 indicated that linoleic acid (9,12-octadecadienoic acid (Z,Z)) and cyclodecasiloxane could be accountable for the antibacterial activity. This is the first study conducted on the secondary metabolites produced by endophytic fungal strains isolated from the Pelargonium sidoides DC. possessing antibacterial properties.

Chemical Composition and Antimicrobial Efficiency of Swietenia macrophylla Seed Extract on Clinical Wound Pathogens

  • Gopalan, Hanan Kumar;Md Hanafiah, Nor Faizzah;Ring, Leong Chean;Tan, Wen-Nee;Wahidin, Suzana;Hway, Teo Siew;Yenn, Tong Woei
    • Natural Product Sciences
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2019
  • Microbial wound infection prolonged the hospitalization and increase the cost for wound management. Silver is commonly used as antimicrobial wound dressing. However, it causes several adverse side effects. Hence, this study was aimed to evaluate the antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Besides, the bioactive constituents of the seed extract were also determined. S. macrophylla seeds were extracted with methanol by maceration method. The seed extract inhibited 5 test bacteria and 1 yeast on disc diffusion assay. The antibacterial activity was broad spectrum, as the extract inhibited both Gram positive and Gram negative bacteria. On kill curve analysis, the antibacterial activity of the seed extract was concentration-dependent, the increase of extract concentration resulted in more reduction of bacterial growth. The extract also caused 99.9% growth reduction of Bacillus subtilis relative to control. A total of 21 compounds were detected in gas chromatography- mass spectrometry analysis. The predominant compounds present in the extract were oleic acid (18.56%) and linoleic acid (17.72%). In conclusion, the methanolic extract of S. macrophylla seeds exhibited significant antimicrobial activity on clinical wound pathogens. Further investigations should be conducted to purify other bioactive compounds from the seeds of S. macrophylla.

Simulation of Ammonia Reduction Effect by Hydroxylamine-oxidoreductase Enzyme Immobilized on the Surface of Water Pipe (수로관 표면 고정 히드록실아민-산화환원효소에 의한 암모니아 저감 효과 모사)

  • Lee, Sang-Ryong;Park, Jin-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • The immobilization of the hydroxylamine-oxidoreductase on the water channel surface was performed to investigate the efficacy of ammonia removal in turbulent flow. The reaction by this enzyme proceeds rapidly by converting hydroxylamine into nitrous acid. For the analysis of the effect, a dimensionless mass transfer governing equation was established with the physical properties based on room temperature. The ammonia diffusion coefficient in water and the kinematic viscosity coefficient of water were 2.45×10-9 ㎡/s and 1×10-6 ㎡/s, respectively. The distribution of ammonia concentration in the water was calculated with respect to the distance from the point at which exposure to ammonia began. The quantitative distribution with respect to the mixing depth was also found. Such a quantitative analysis can provide insight into whether the enzyme immobilized on the water channel surface can be effectively used for ammonia removal.

Hepatic Pseudolymphoma Mimicking a Hypervascular Tumor: A Case Report (과혈관성 종양으로 오인된 간의 가성림프종: 증례보고)

  • Im, Bora;Jang, Suk Ki;Yeon, Jae Woo;Paik, So Ya;Park, Sang Jong;Kim, Hyuk Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.6
    • /
    • pp.348-353
    • /
    • 2018
  • Hepatic pseudolymphoma is a rare benign liver mass that is characterized by proliferation of non-neoplastic lymphocytes extranodally. To the best of our knowledge, only 46 cases have been reported in the English literature. We described the case of a 75-year-old woman with hepatic pseudolymphoma mimicking a hypervascular tumor. After the histological confirmation of the rectal neuroendocrine tumor, CT scan revealed a 1.0 cm-sized, poorly-defined and low-density nodule in the liver. On MRI, the hepatic nodule showed an arterial enhancement and a low-signal intensity on the hepatobiliary phase. On diffusion-weighted imaging, the hepatic nodule showed a high signal intensity on a high b-value. On fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, it revealed a high standardized uptake value nodule. The US showed the hypoechoic nodule and the US-guided biopsy confirmed the hepatic pseudolymphoma.