• Title/Summary/Keyword: Mass Transfer Reactor

Search Result 148, Processing Time 0.023 seconds

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs 처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배;조광명
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.52-56
    • /
    • 2002
  • The study was carried out to evaluate the characteristics of biodegradation by Pseudomonas putida G7 in soil column. The reactor system was used to investigate mass transfer of VOCs as Toluene in a column of unsaturated soil. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOCs remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. It can be concluded that the coefficient for gas liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to VOCs. Finally, it appeared that bioremediation technology of VOCs which are difficult to be decomposed by chemical methods.

Performance of adsorption heat pump with radial shape adsorber heat exchanger for air cooling (공냉식 방사형 열교환기를 갖는 흡착식 히트펌프의 성능)

  • Baek, N.C.;Yang, Y.S.;yoon, E.S.;Lee, J.K.;Joo, M.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.73-81
    • /
    • 1997
  • In this experimental study, the air cooling radial shape heat exchanger which influences on the COP and the cooling capacity by heat and mass transfer rate in the adsorbent bed was designed and applied to test its performance for adsorption heat pump(AHP). Zeolite-water was used for the adsorbent-adsorbat pair. As a result, the cooling COP and a cycle period of this adsorption heat pump are 0.28 and 2 hours, respectively, on the condition of none heat recovery from the adsorption reactor(absorber). The other results and recommendations are mainly related to improving the heat and mass transfer inside the absorber to reduce a cycle period.

  • PDF

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(I) : Evaluation of lmmobilized CSTR for Hydrogen Productivity and Effectiveness Factor (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(I) 고정화 연속 교반탱크 반응기에서의 수소 생산성 및 효율인자 평가)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.243-255
    • /
    • 1993
  • In this study, it was observed that hydrogen Productivity varied with stirrer speed, bead radius, input glucose concentration and dilution rate in a continuous stirred tank reactor in which immobilized R. rubrum KS-301 was used as a hydrogen-producing bacterium The mass transfer resistance due to cell immobilization was also studied. In order to estimate an effectiveness factor, Des of glucose was first obtained, which was subsequently represented by the correlation equation between Dos and Xb, As a result external mass transfer resistance could be neglected for stirrer speeds greater than 400rpn With bead radius increasing, the hydrogen productivity and internal effectiveness factor decreased. With input 91ucose concentration increasing, the hydrogen productivity and interval and external effectiveness factor increased. Although an Internal effectiveness factor was not affected, hydrogen productivity Increased with dilution rate increasing. An overall effectiveness factor remained nearly constant for the dilution rates investigate4 but increased with input 91ucose concentration increasing.

  • PDF

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel (곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구)

  • Jang, Hyun;Park, In Sung;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.261-269
    • /
    • 2015
  • In this study, numerical analysis of curved channel steam-methanol reformer was conducted using the computational fluid dynamics (CFD) commercial code STAR-CCM. A pre-numerical analysis of reference model with a cylindrical channel reactor was performed to validate the combustion model of the CFD commercial code. The result of advance validation was in agreement with reference model over 95%. After completing the validation, a curved channel reactor was designed to determine the effects of shape and length of flow path on methanol conversion efficiency and generation of hydrogen. Numerical analysis of the curved-channel reformer was conducted under various flow rate ($10/15/20{\mu}l/min$). As a result, the characteristics of flow and mass transfer were confirmed in the cylindrical channel and curved channel reactor, and useful information about methanol conversion efficiency and hydrogen generation was obtained for various flow rate.

Characteristics of the Bioreactors of Hydrogen-producing Immobilized Cells (II) -Overall Effectiveness Factor in Continuous Reactors- (수소생산 고정화 생물 반응기의 특성(II) -연속 반응기에서의 총괄 효율인자 -)

  • 이명재;선용호;한정우;조영일
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.510-516
    • /
    • 1988
  • The effects of input substrate concentration and dilution rate on mass transfer resistance in the operation of immobilized cell reactors were investigated using Rhodospirillum rubrum KS-301 immobilized by Ca alginate as reactor element and glucose as growth-limiting substrate. The kinetic parameters were obtained to estimate effectiveness factors. In the packed-bed reactor, internal mass transfer resistance was predominating although external resistance could not be neglected. The overall effectiveness factor was decreased with increase of dilution rate. In the continuous stirred-tank reactor, external resistance was nearly neglected and the overall effectiveness factor was not affected by dilution rate. In this experiment the overall effectiveness factors in PBR and CSTR were estimated to be 0.70 and 0.71 at D$_{i}$ = 0.2/h, R = 0.15 cm, and S$_{i}$ : 1.0g/L, respectively.

  • PDF

Numerical Analysis on the Beat and Mass Transport in Horizontal MOCVD Reactor for the Growth of GaN Epitaxy (수평형 MOCVD에 의한 GaN 에피층 성장시 반응로내의 열 및 물질전달에 관한 수치해석 연구)

  • 신창용;윤정모;이철로;백병준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.341-349
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD(metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactant to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. From the numerical calculation, the concentration of reactants could be qualitatively predicted by the Nusselt number(heat transfer) and the optimum mass flow rate, wall tilt angle and inlet condition were considered.

  • PDF

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

Theoretical and numerical study to investigate characteristics of light-off and steady state of methane autothermal reactor for efficient light-off, high hydrogen yield and selectivity (시동 특성, 수소 생산 및 선택성 향상을 위한 자열개질기의 이론 및 수치해석적 연구)

  • Lee, Shin-Ku;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3353-3358
    • /
    • 2007
  • The present paper is devoted to investigate dynamic effect and steady-state performance of methane autothermal reformer theoretically and numerically. In order to simplify the complicated phenomena in the system, axisymmetric heterogeneous reactor model is developed. As autothermal reaction takes places on catalyst surface between bulk gas and catalyst, volume averaging method is incorporated using porous medium approach. To understand the start-up process which occurs in the reactor is highly important. Therefore, in this paper we get various goverining equations to find out transient and steady solutions and time scale for start-up introducing dimensionless variables. Start-up is a significant issue in reforming reaction for automobile system and fueling of SOFC-based auxiliary power units. This paper deals with characteristics of heat and mass transfer and predicted light-off time in the reformer as oxygen to carbon ratio ($O_2$/C) and amount of feeding gas.

  • PDF