수도권 대기관리권역 내에서 발생되는 휘발성 유기화합물(VOCs)를 규제하고 있다. VOCs는 산업 활동 및 일상생활에서 많이 쓰이고 있는 유기용제에서 발생되고 있다. 특히 주거지역과 인접하게 위치하고 있는 도장 공정에서는 다량의 유기용제를 사용하고 있으며, 그에 대한 영향이 크게 나타날 것으로 예상된다. 도장 공정에서 배출되는 VOCs을 제거하기 위하여 다양한 기술이 개발되고 있다. 최근 플라즈마를 이용하여 유해 VOCs를 고온에서 분해하는 공정이 제시되었는바, 본 연구에서는 반응기 설계에 앞서 전산유체역학기법을 사용하여 초고온 공정 수치해석을 실시하였다. 수치해석은 질량과 운동량에 대한 보존 방정식과 에너지 보존 방정식을 이용하였다. 원심력 반응기의 내부 유체유동은 내측 벽면을 타고 강한 선회류를 형성하면서 하부로 하강하는 것을 알 수 있었다. 플라즈마에 의한 고온 가스는 반응기 하부까지 영향을 주지만, 방사형 방향(radial direction)의 열전달은 거의 없는 것으로 나타났다. 시험용 VOCs인 톨루엔에 대한 분해효율을 계산한 결과, 반응기 전체에 대하여 67%가 얻어졌으며, 이는 실제 플라즈마를 이용한 실험실 규모의 실험 결과치인 약 70% 와 비교적 유사하게 나타났다.
본 총설은 분리막기술이 적용된 수소생산에 대한 개론으로, 특히, 암모니아를 수소운반체로 이용하는 수소생산에 대한 연구결과를 중점적으로 서술하였다. 암모니아를 수소운반체로 적용한 수소생산은 추가적인 탄소생성이 없다는 점 외에 여러 측면에 있어 이점이 있다. 많은 연구들이 고순도 수소 분리 및 생산을 위한 분리막 개발을 위해 진행되고 있으며, 이들 중 팔라듐을 기본으로 한 분리막(예를 들어, 다공성 세라믹 또는 다공성 금속 지지체와 팔라듐 합금의 얇은 선택층으로 이루어진 분리막)에 대한 연구가 활발하다. 반면에, 효율적인 암모니아 분해를 위해서는 주로 루테늄 촉매가 적용되고 있으며, 루테늄과 지지체 및 촉진제로 이루어진 루테늄에 기반을 둔 촉매에 대한 연구발표가 다수 존재한다. 수소생산을 위한 분리막 반응기 형태로는 충전층, 유동층, 그리고 마이크로반응기 등이 있으며, 이들의 최적화 및 원활한 물질전달 연구는 현재진행형이다. 또한, 높은 암모니아 분해율, 고순도 수소생산 및 높은 수소생산율을 얻기 위해 분리막과 촉매의 다양한 조합에 대한 연구 및 분리막과 촉매의 역할을 동시에 구현할 수 있는 분리막에 대한 연구가 발표되고 있다.
An experimental study on heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with the increase of the system pressure For a fixed inlet mass flux and subcooling, the CHF falls sharply at about 3.8 MPa and shows a trend toward converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall because the CHF occurred at remarkably low power levels. In the pressure reduction transient experiments, as soon as the pressure passed through the critical pressure, the wall temperatures rise rapidly up to a very high value due to the occurrence of the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, then tends to decrease gradually.
Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
Nuclear Engineering and Technology
/
제49권1호
/
pp.103-112
/
2017
Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.
An experimental study of heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) tests, and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with increase of the system pressure for fixed inlet mass flux and subcooling. The CHF falls sharply at about 3.8 MPa and shows a trend towards converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall, because the CHF occurs at remarkably low power levels. In the pressure reduction transients, as soon as the pressure passes below the critical pressure from the supercritical pressure, the wall temperatures rise rapidly up to very high values due to the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, and then tends to decrease gradually.
In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and $Al_2O_3$ nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of $1,600kg/m^2s$, $1,800kg/m^2s$, $2,100kg/m^2s$, $2,400kg/m^2s$, and $2,600kg/m^2s$. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of $2,400kg/m^2s$ compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.
음이온계면활성제인 sodium di[2-ethylhexyl] sulfosuccinate(AOT)를 isooctane에 용해하여 조제한 W/O형 마이크로에멀젼을 이용하여 수용액중의 카드뮴, 구리 및 크롬 등의 중금속이온을 조작이 간단하고 효과적이며 대량으로 분리처리할 수 있는 시스템을 개발하였다. $Cd^{2+}$, $Cu^{2+}$ 및 $Cr^{3+}$는 W/O형 마이크로에멀젼에 의한 분리 후 3~7분 후에 평형에 도달하였고, 분리율과 분리속도는 수용액의 pH가 증가할수록 증가하였으며 $Cr^{6+}$ 는 전 pH 영역에서 분리제거가 되지 않았다. pH 3.5에서 $Cr^{3+}$는 5분 후에 90%이상 제거되었다. 분리속도식은 유사1차식으로 나타낼 수 있으며, 초기 물질전달계수(Jo)와 수용액 pH의 상관관계를 제시하였다.
본 연구에서는 촉매가 들어있는 고정층 반응로의 단일 개질관에 대하여 전산 유체 해석(Fluent ver. 13.0)을 수행하여 열/유동 특성을 파악하고, 주입 가스에 따른 추출 가스의 종류를 다공성에 따라 예측하였다. 촉매 형상을 모델링하기 위하여, 개질관 내부에 있는 촉매를 모두 다공성 물질이라고 가정하고, 수정된 Eugun 식을 해석에 적용하였다. 유체의 공극률을 기준으로 0.545, 0.409, 그리고 0.403로 설정하고, 결과를 비 다공성인 경우와 비교하였다. 수치해석 결과, 개질관 벽면의 온도는 흡열반응과 주변 열전달로 인하여 개질관의 온도보다 높게 나타나며, 수소 생성량도 다소 증가했다. 촉매의 공극률이 증가 하게 될 경우, 압력 강하로 인하여 관 중심부 온도 및 수소 생성량이 현저하게 감소하는 경향을 보였다.
${\beta}$-galactosidase를 공유결합으로 키토산 담체에 고정화하여 고정화 효소의 특성을 조사하였다. 또한 충진층 반응기에서 연속 조업을 실시하여 공정 최적화를 실시하였다. 키토산 담체에 대한 효소 고정화 효율은 최대 75%을 나타내었다. 고정화 효소에 대한 최적의 pH는 7.0이었고 최적의 온도는 $50^{\circ}C$였다. pH와 온도의 실험 범위에서 고정화 효소가 자유 효소에 비해 넓은 분포를 보여 pH와 온도에 덜 민감하게 작용하였다. 충진층 반응기에서 고정화 효소의 운전에 대한 수학적 모델을 세우고 수치적으로 해를 구하였다. 투입되는 유당의 농도와 유량에 대해서 충진층 반응기의 출구에서 유당의 전환율을 측정하였다. 실험 결과를 경쟁적 저해 효소 반응식과 물질전달 저항을 고려한 수학적 모델의 결과와 비교하였다. 모델의 결과는 실험 결과를 5% 이내의 오차로 잘 예측하였다. 그리고 충진층 반응기의 길이에 따른 유당 전환율과 연속운전 시간에 따른 효소의 비활성화를 고려한 전환율을 모델로부터 예측하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.