• Title/Summary/Keyword: Mass Properties

Search Result 2,754, Processing Time 0.039 seconds

Strain Improvement through Protoplast Formation and Mutation of Inonotus obliquus Mycelia for Enhanced Production of Innerpolysaccharides (IPS) in Suspended Mycelial Cultures (Inonotus obliquus 의 균사체 액상배양에서 원형질체 형성과 돌연변이를 통한 단백다당체 고생산성 균주 개발)

  • Hong, Hyeong-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2010
  • Studies on the production of cell-wall bound innerpolysaccharides (IPS) (soluble ${\beta}$-D-glucan) have been performed by use of suspended myelial cultures of Inonotus obliquus. This product has promising potentials as an effective antidiabetic as well as an immunostimulating agents. As a first step to enhanced production of IPS, Intensive strain improvement programs were carried out by obtaining a large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because about fivefold higher amount of protoplasts ($2.3{\times}10^6$ protoplasts/mL) could be recovered with relatively high regeneration rates of $10^{-2}{\sim}10^{-3}$ by applying a modified filtration method, as compared to the previously used trapping method. A basic protocol necessary for UV-mutation of the protoplasts was also developed, resulting in several overproducing variants with good fermentation properties. Since the amount of IPS extracted from the mycelial cell walls of I. obliquus turned out to be almost constant per g DCW, increase in cell mass was considered the most important factor for the enhancement in IPS production. Therefore, attempts were made to screen mutant cells showing rapid mycelial growth rate in the final suspended cultures. Notably, the mutant strains showing an active cellgrowth in the preceding solid growth cultures were observed to produce higher amount of IPS in the suspended fermentations as well. A striking mutant, OBLQ756-15-5 strain, obtained from the survivors of a harsh UV-treated condition (97% death rate) was found to stably produce as high cell mass as 22 g DCW/L in the final fermentations. Currently, this strain is being tested for development of a scaled-up fermentation process for mass production of IPS.

Laboratory Tests for Trichloroethylene (TCE) and Toluene Remediation in Soil Using Soil Vapor Extraction (토양증기추출(Soil Vapor Extraction)을 이용한 토양 내 Trichloroethylene (TCE)과 Toluene정화 실험)

  • 이민희;강현민
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • Column experiments were performed to evaluate the removal efficiency of soil vapor extraction (SVE) iota TCE (trichloroethylene) and toluene in soil. Homogeneous Ottawa sands and real soils collected from contaminated area were used to investigate the effect of soil properties and SVE operation conditions on the removal efficiency. In column teats with two different sizes of Ottawa sand, the maximum effluent TCE concentration in a coarse sand column was 442 mg/L and 337 mg/L in a fine sand column. However, after 20 liter gas flushing, the effluent concentrations were very similar and more than 90% of initial TCE mass were removed from the column. For two real contaminated soil columns, the maximum effluent concentration decreased 50% compared with that in the homogeneous Ottawa coarse sand column, but 99% of initial TCE mass were extracted from the column within 40 liter air flushing, suggesting that SVE is very available to remove volatile NAPLs in the contaminated soil. To investigate the effect of contaminant existing time on the removal efficiency, an Ottawa sand column was left stable for one week after TCE was injected and the gas extraction was applied into the column. Its effluent concentration trend was very similar to those for other Ottawa sand columns except that the residual TCE after the air flushing showed relatively high. Column tests with different water contents were performed and results showed high removal efficiency even in a high water content sand column. Toluene as one of BTEX compounds was used in an Ottawa sand column and a real soil column. Removal trends were similar to those in TCE contaminated columns and more than 98% of initial toluene mass were removed with SVE in both column.

PASKYULA's Theory of Art (파스큐라의 미술론)

  • Jung, Ju-Young
    • The Journal of Art Theory & Practice
    • /
    • no.5
    • /
    • pp.43-80
    • /
    • 2007
  • PASKYULA was formed in September, 1923 through the union of artists involved in two art groups: Kim Ki-Jin, Kim Bok-Jin, Yeon Hak-Nyeon who had previously participated in the ToWolHoi, and Park Young-Hi, Lee Sang-Hwa, An Seok-Ju, former members of the BaeckJo. After its founding, the PASKYULA artists had been searching for the social function of art to reform the harsh reality of Minjung and the nation with criticism toward society as well as art world. Their art theory for MinJung could grow relatively ease in relation to changing social and political conditions in the early 1920s. In August, 1925, PASKYULA organized the Korea Artista Proletaria Federatio with the YeomGunSa, and laid the groundwork for Proletariat art movement which was regularized in the late 1920s. From PASKYULA up to the early state of KAPF, the theory of art advocated by Kim Bok-Jin and An Seok-Ju could be summarized as "art for MinJung". At that time, widely ranging discourses on MinJung, however, was spawned in art theory, because many intellectuals-including artists and writers-begun to pay more attention to MinJung, who emerged as one of the social forces after the Samil Independent Movement. Sometimes, MinJung was construed as the target of enlightenment from a negative viewpoint. On the other hand, several intellectuals under the influence of individualism asserted that the discussion itself on MinJung exerted an evil influence on art. In contrast of these cases, the PASKYULA artists including Kim Bok-Jin, An Seok-Ju perceived that MinJung had the potential to change society, and regarded them as "a creator of genuine civilization and art". In the PASKYULA artist's writings, the concept of MinJung was often overlapped with the meaning of the Choson nation suffering under colony. Although their concept of MinJung was transformed gradually into the proletariat as they were under the strong influence of socialism, it did not change that they grasped the realities of the whole Choson Peninsula through the proletarian consciousness. In the early state of PASKYULA, the methodology for social function of art was presented in a twofold manner. First of all, Kim Bok-Jin emphasized on the necessity of education to improve MinJung's way of life through art, and it was embodied by the organization of ToWol Art Workshop and public lecture. Also, he championed "the popularization of art", which was one of methods to distribute art to MinJung. According to the PASKYULA artists, art should be not art for art' sake but art for MinJung. That was why they advocated the convergence of art and MinJung's life. Especially Kim Bok-Jin affirmed a link between art and industry because he considered industry the field inextricably linked with MinJung's life. In this context, his idea could be read as the generalization and equalization within the framework of possession. Kim Bok-Jin thought that the social ramifications of capitalism deprived MinJung of their right to enjoy art, and emphasized the artist' social role to return the right to them. That is, the even distribution of art was mainly discussed than the contents of art in the half of 1920s. By 1925, the contents of art itself became an issue in the PASKYULA art theory, and it was based in realism. Kim Bok-Jin and An Seok-Ju insisted that art should be reflection of real life. At that time, realism acquired the representation of MinJung and the nation's realities not realistic style. In fact, the various Western art styles including Futurism, Constructivism, Cubism etc. were exploited in the PASKYULA's visual images. Western art, target of criticism on theory, was selectively adopted in the works which were produced by Kim Bok-Jin and An Seok-Ju. Kim Bok-Jin's MoonYeUnDong cover design was conceived of as the example in which Western art was adopted with it's ideology under the influence of MAVO, while Western art shown in An Seok-Ju's illustrations served as a decorative function in many cases. Especially, An Seok-Ju attempted the various styles of Western art simultaneously, which may be seen as representing that PASKYULA did not have a firm ideology for their style. Also, it can be read as showing his hasty zeal to overcome Western art rapidly. The wish to establish "art for MinJung" as soon as possible was accompanied with the will to jump over the all steps of Western art though it was superficial. This aspiration of PASKYULA was expressed through the mass media, which had the potential for communicating to MinJung. At this point, there was a significant disparity between PASKYULA and another art groups in the first half of 1920s. However, the PASKYULA's method on the basis of the mass media could not but have a certain limitation because of the medium's properties. Nevertheless, PASKYULA' attempts may be considered to be valuable in sense that they expended the boundaries of Korean modern art into the commercial art questioning the matter of the distribution for art.

  • PDF

Mass Proliferation of Hibiscus hamabo Adventitious Root in an Air-lift Bioreactor, and the Antioxidant and Whitening Activity of the Extract (생물반응기를 이용한 황근 부정근의 대량증식과 추출물의 항산화 및 미백 활성 평가)

  • Lee, Jong-Du;Hyun, Ho Bong;Hyeon, Hyejin;Jang, Eunbi;Ko, Min-Hee;Yoon, Weon-Jong;Ham, Young Min;Jung, Yong-Hwan;Choi, Hwon;O, Eu Gene;Oh, Daeju
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • Hibiscus hamabo Sieb. et Zucc. (yellow hibiscus) is a deciduous semi-shrub plant and mainly growing in Jeju Island. This is known the unique wild hibiscus genus and classified as an 2nd grade of endangered plant for Korean Red List. In previous studies, properties of germination, ecological, genetical and salt resistance have been reported. In this study, we investigated mass-proliferated adventitious root using bioreactor, antioxidant and whitening effects to conduct functional ingredients. Yellow hibiscus were collected from Gujwa, Jeju by prior permission and they were introduced by explant type and various medium composition after surface sterilization. As a result, seed response rates were evaluated at range of 51.17~51.83%, in terms of comprehensive efficiency of shoot and root formation. In the case of adventitious root propagation condition was confirmed in half strength Murashige and Skoog medium salts, 30 mg/L sucrose, and 2 mg/L indole-3-butyric acid for 8 weeks in 5,000 mL bioreactor. We also compared between relationship with biomass and secondary metabolites accumulation by total phenolics content, the flavonoid content, DPPH free radical scavenging activity and melanin content. The results indicated that adventitious root mass proliferation, antioxidant and whitening effect could develop value of the high-quality cosmeceutical ingredient and further metabolite studies.

Effect of Hypotonic and Hypertonic Solution on Brining Process for Pork Loin Cube: Mass Transfer Kinetics (돼지고기 등심의 염지공정에서 소금농도의 영향: 물질전달 동역학을 중심으로)

  • Park, Min;Lee, Nak Hun;In, Ye-Won;Oh, Sang-Yup;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Volatile Flavor Properties of Hallabong Grown in Open Field and Green House by GC/GC-MS and Sensory Evaluation (노지 및 시설에서 재배된 한라봉의 기기분석 및 관능평가에 의한 향기특성)

  • Song, Hee-Sun;Park, Yeon-Hee;Moon, Doo-Gyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1239-1245
    • /
    • 2005
  • Hallabong peel oils grown in open field and green house were extracted by hand-pressing flavedo and collected on ice. Volatile flavor components of Hallabong peel oils were identified and compared by using gas chromatography and mass- spectrometry. Forty-four flavor components were identified in open field oil and 45 flavor components in green house oil. (E) -Limonene-1,2-epoxide and neral were identified only in Hallabong oil grown in open field, on the other hand, $\beta$-cubebene, $\beta$-elemene and decyl acetate were detected only in green house oil. Limonene was the most abundant component in both oils as more than 86$\%$ of peak weight, followed by sabinene (1.8$\~$ 3.6$\%$) and myrcene (2.4$\~ $2.6$\%$). The difference of the volatile profile between open field and green house oils were significantly characterized by identification and quantity of alcohol group. The total alcohols in open field and green house oils accounted for 1.8$\%$ and 0.8$\%$, respectively. Among alcohols, the level of linalool was relatively high in open field oil (1.2$\%$), however, it accounted for 0.5$\%$ in green house oil. Flavor properties of fresh Hallabong peel and flesh were also examined by sensory evaluation. Flavor properties of fresh Hallabong grown in open field were relatively stronger on both peel and flesh by sensory analysis. Sweetness was strong in Hallabong flesh from open field, and sourness in that from green house. The sensory evaluation of the preference in consideration of taste and aroma was significantly high in Hallabong grown in open field (p<0.01). From the present study, the stronger flayer properties and the preference of Hallabong from open field by sensory evaluation seem to be associated with the high level of linalool in its peel oil, and the composition of monoterpene hydrocarbons such as sabinene and (E) -$\beta$ -ocimene.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties (인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.361-368
    • /
    • 2021
  • The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.